145
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The index of ideality of correlation: QSAR studies of hepatitis C virus NS3/4A protease inhibitors using SMILES descriptors

, , , &
Pages 495-520 | Received 07 Apr 2021, Accepted 29 Apr 2021, Published online: 02 Jun 2021

References

  • M.J. Evans, T. Von Hahn, D.M. Tscherne, A.J. Syder, M. Panis, B. Wölk, T. Hatziioannou, J.A. McKeating, P.D. Bieniasz, and C.M. Rice, Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry, Nature 446 (2007), pp. 801–805. doi:10.1038/nature05654.
  • D. Moradpour, F. Penin, and C.M. Rice, Replication of hepatitis C virus, Nat. Rev. Microbiol. 5 (2007), pp. 453–463.
  • S. Ahmadi, M.R. Khazaei, and A. Abdolmaleki, Quantitative structure–property relationship study on the intercalation of anticancer drugs with ct-DNA, Med. Chem. Res. 23 (2014), pp. 1148–1161. doi:10.1007/s00044-013-0716-z.
  • J.B. Ghasemi, S. Ahmadi, and S. Brown, A quantitative structure–retention relationship study for prediction of chromatographic relative retention time of chlorinated monoterpenes, Environ. Chem. Lett. 9 (2011), pp. 87–96. doi:10.1007/s10311-009-0251-9.
  • J.B. Ghasemi, S. Ahmadi, and M. Ayati, QSPR modeling of stability constants of the Li-hemispherands complexes using MLR: A theoretical host-guest study, Macroheterocycles 3 (2010), pp. 234–242. doi:10.6060/mhc2010.4.234.
  • A.Z. Dudek, T. Arodz, and J. Gálvez, Computational methods in developing quantitative structure-activity relationships (QSAR): A review, Comb. Chem. High T. Scr. 9 (2006), pp. 213–228.
  • K. Roy and R.N. Das, A review on principles, theory and practices of 2D-QSAR, Curr. Drug Metab. 15 (2014), pp. 346–379. doi:10.2174/1389200215666140908102230.
  • P. Gramatica and A. Sangion, A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology, J. Chem. Inf. Model. 56 (2016), pp. 1127–1131.
  • A. Kumar, J. Sindhu, and P. Kumar, In-silico identification of fingerprint of pyrazolyl sulfonamide responsible for inhibition of N-myristoyltransferase using Monte Carlo method with index of ideality of correlation, J. Biomol. Struct. Dyn. (2020). doi: 10.1080/07391102.2020.1784286.
  • P. Kumar and A. Kumar, Nucleobase sequence based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method, J. Biomol. Struct. Dyn. 38 (2019), pp. 3296–3306. doi:10.1080/07391102.2019.1656109.
  • M. Duhan, R. Singh, M. Devi, J. Sindhu, R. Bhatia, A. Kumar, and P. Kumar, Synthesis, molecular docking and QSAR study of thiazole clubbed pyrazole hybrid as α-amylase inhibitor, J. Biomol. Struct. Dyn. 39 (2021), pp. 91–107. doi:10.1080/07391102.2019.1704885.
  • V.P. Ničković, Z.N. Vujnović-Živković, R. Trajković, D. Krtinić, L. Ristić, M. Radović, Z. Ćirić, D. Sokolović, and A.M. Veselinović, In silico studies and the design of novel agents for the treatment of systemic tuberculosis, J. Biomol. Struct. Dyn. 37 (2019), pp. 3198–3205. doi:10.1080/07391102.2018.1511476.
  • J. Zhu, Y. Li, H. Yu, L. Zhang, X. Mao, and T. Hou, Insight into the structural requirements of narlaprevir-type inhibitors of NS3/NS4A protease based on HQSAR and molecular field analyses, Comb. Chem. High T. Scr. 15 (2012), pp. 439–450.
  • E.F.F. Da Cunha, K.S. Matos, and T.C. Ramalho, QSAR and docking studies of HCV NS3 serine protease inhibitors, Med. Chem. 9 (2013), pp. 774–805. doi:10.2174/1573406411309060003.
  • P. Kumar, A. Kumar, and J. Sindhu, In silico design of diacylglycerol acyltransferase-1 (DGAT1) inhibitors based on SMILES descriptors using Monte-Carlo method, SAR QSAR Environ. Res. 30 (2019), pp. 525–541. doi:10.1080/1062936X.2019.1629998.
  • P. Kumar and A. Kumar, CORAL: QSAR models of CB1 cannabinoid receptor inhibitors based on local and global SMILES attributes with the index of ideality of correlation and the correlation contradiction index, Chemom. Intell. Lab. 200 (2020), pp. 103982. doi:10.1016/j.chemolab.2020.103982.
  • S. Ahmadi, A.P. Toropova, and A.A. Toropov, Correlation intensity index: Mathematical modeling of cytotoxicity of metal oxide nanoparticles, Nanotoxicology 14 (2020), pp. 1118–1126. doi:10.1080/17435390.2020.1808252.
  • S. Ahmadi and A. Akbari, Prediction of the adsorption coefficients of some aromatic compounds on multi-wall carbon nanotubes by the Monte Carlo method, SAR QSAR Environ. Res. 29 (2018), pp. 895–909. doi:10.1080/1062936X.2018.1526821.
  • S. Lotfi, S. Ahmadi, and P. Zohrabi, QSAR modeling of toxicities of ionic liquids toward Staphylococcus aureus using SMILES and graph invariants, Struct. Chem. 31 (2020), pp. 2257–2270. doi:10.1007/s11224-020-01568-y.
  • S. Ahmadi, S. Lotfi, and P. Kumar, A Monte Carlo method based QSPR model for prediction of reaction rate constants of hydrated electrons with organic contaminants, SAR QSAR Environ. Res. 31 (2020), pp. 935–950. doi:10.1080/1062936X.2020.1842495.
  • F.-R. Alexandre, G. Brandt, C. Caillet, D. Chaves, T. Convard, M. Derock, D. Gloux, Y. Griffon, L. Lallos, and F. Leroy, Synthesis and antiviral evaluation of a novel series of homoserine-based inhibitors of the hepatitis C virus NS3/4A serine protease, Bioorg. Med. Chem. Lett. 25 (2015), pp. 3984–3991. doi:10.1016/j.bmcl.2015.07.020.
  • R. Beevers, M.G. Carr, P.S. Jones, S. Jordan, P.B. Kay, R.C. Lazell, and T.M. Raynham, Solution and solid-Phase synthesis of potent inhibitors of hepatitis C Virus NS3 proteinase, Bioorg. Med. Chem. Lett. 12 (2002), pp. 641–643. doi:10.1016/S0960-894X(01)00816-2.
  • J. Bennett, A. Campbell, A. Campbell, M. Carr, R. Dunsdon, J. Greening, D. Hurst, N. Jennings, P. Jones, and S. Jordan, The identification of α-ketoamides as potent inhibitors of hepatitis c virus nS3-4a proteinase, Bioorg. Med. Chem. Lett. 11 (2001), pp. 355–357. doi:10.1016/S0960-894X(00)00654-5.
  • F. Bilodeau, M.D. Bailey, P.K. Bhardwaj, J. Bordeleau, P. Forgione, M. Garneau, E. Ghiro, V. Gorys, T. Halmos, and E.S. Jolicoeur, Synthesis and optimization of a novel series of HCV NS3 protease inhibitors: 4-Arylproline analogs, Bioorg. Med. Chem. Lett. 23 (2013), pp. 4267–4271. doi:10.1016/j.bmcl.2013.03.043.
  • X.C. Sheng, T. Appleby, T. Butler, R. Cai, X. Chen, A. Cho, M.O. Clarke, J. Cottell, W.E. Delaney IV, and E. Doerffler, Discovery of GS-9451: An acid inhibitor of the hepatitis C virus NS3/4A protease, Bioorg. Med. Chem. Lett. 22 (2012), pp. 2629–2634. doi:10.1016/j.bmcl.2012.01.017.
  • M.O. Clarke, X. Chen, A. Cho, W.E. Delaney IV, E. Doerffler, M. Fardis, M. Ji, M. Mertzman, R. Pakdaman, and H.-J. Pyun, Novel, potent, and orally bioavailable phosphinic acid inhibitors of the hepatitis C virus NS3 protease, Bioorg. Med. Chem. Lett. 21 (2011), pp. 3568–3572. doi:10.1016/j.bmcl.2011.04.125.
  • M.O. Clarke, D. Byun, X. Chen, E. Doerffler, S.A. Leavitt, X.C. Sheng, C.Y. Yang, and C.U. Kim, Novel, potent and orally bioavailable indolizidinone-derived inhibitors of the hepatitis C virus NS3 protease, Bioorg. Med. Chem. Lett. 22 (2012), pp. 1095–1098. doi:10.1016/j.bmcl.2011.11.107.
  • C.Z. Ding, Y.-K. Zhang, X. Li, Y. Liu, S. Zhang, Y. Zhou, J.J. Plattner, S.J. Baker, L. Liu, and M. Duan, Synthesis and biological evaluations of P4-benzoxaborole-substituted macrocyclic inhibitors of HCV NS3 protease, Bioorg. Med. Chem. Lett. 20 (2010), pp. 7317–7322. doi:10.1016/j.bmcl.2010.10.071.
  • P.W. Glunz, B.D. Douty, and C.P. Decicco, Design and synthesis of bicyclic pyrimidinone-based HCV NS3 protease inhibitors, Bioorg. Med. Chem. Lett. 13 (2003), pp. 785–788. doi:10.1016/S0960-894X(03)00022-2.
  • N. Goudreau, D.R. Cameron, P. Bonneau, V. Gorys, C. Plouffe, M. Poirier, D. Lamarre, and M. Llinas-Brunet, NMR structural characterization of peptide inhibitors bound to the Hepatitis C virus NS3 protease: Design of a new P2 substituent, J. Med. Chem. 47 (2004), pp. 123–132. doi:10.1021/jm0303002.
  • W. Han, Z. Hu, X. Jiang, and C.P. Decicco, α-Ketoamides, α-ketoesters and α-diketones as HCV NS3 protease inhibitors, Bioorg. Med. Chem. Lett. 10 (2000), pp. 711–713. doi:10.1016/S0960-894X(00)00074-3.
  • W. Han, Z. Hu, X. Jiang, Z.R. Wasserman, and C.P. Decicco, Glycine α-ketoamides as HCV NS3 protease inhibitors, Bioorg. Med. Chem. Lett. 13 (2003), pp. 1111–1114. doi:10.1016/S0960-894X(03)00031-3.
  • W. Han, X. Jiang, Z. Hu, Z.R. Wasserman, and C.P. Decicco, Investigation of glycine α-ketoamide HCV NS3 protease inhibitors: Effect of carboxylic acid isosteres, Bioorg. Med. Chem. Lett. 15 (2005), pp. 3487–3490.
  • W.M. Kazmierski, R. Hamatake, M. Duan, L.L. Wright, G.K. Smith, R.L. Jarvest, -J.-J. Ji, J.P. Cooper, M.D. Tallant, and R.M. Crosby, Discovery of novel urea-based hepatitis C protease inhibitors with high potency against protease-inhibitor-resistant mutants, J. Med. Chem. 55 (2012), pp. 3021–3026. doi:10.1021/jm201278q.
  • X. Li, Y.-K. Zhang, Y. Liu, C.Z. Ding, Q. Li, Y. Zhou, J.J. Plattner, S.J. Baker, X. Qian, and D. Fan, Synthesis and evaluation of novel α-amino cyclic boronates as inhibitors of HCV NS3 protease, Bioorg. Med. Chem. Lett. 20 (2010), pp. 3550–3556. doi:10.1016/j.bmcl.2010.04.129.
  • X. Li, Y.-K. Zhang, Y. Liu, C.Z. Ding, Y. Zhou, Q. Li, J.J. Plattner, S.J. Baker, S. Zhang, and W.M. Kazmierski, Novel macrocyclic HCV NS3 protease inhibitors derived from α-amino cyclic boronates, Bioorg. Med. Chem. Lett. 20 (2010), pp. 5695–5700. doi:10.1016/j.bmcl.2010.08.022.
  • X. Li, Y.-K. Zhang, Y. Liu, S. Zhang, C.Z. Ding, Y. Zhou, J.J. Plattner, S.J. Baker, L. Liu, and W. Bu, Synthesis of new acylsulfamoyl benzoxaboroles as potent inhibitors of HCV NS3 protease, Bioorg. Med. Chem. Lett. 20 (2010), pp. 7493–7497. doi:10.1016/j.bmcl.2010.10.007.
  • X. Li, S. Zhang, Y.-K. Zhang, Y. Liu, C.Z. Ding, Y. Zhou, J.J. Plattner, S.J. Baker, W. Bu, and L. Liu, Synthesis and SAR of acyclic HCV NS3 protease inhibitors with novel P4-benzoxaborole moieties, Bioorg. Med. Chem. Lett. 21 (2011), pp. 2048–2054. doi:10.1016/j.bmcl.2011.02.006.
  • X. Li, Y. Liu, Y.-K. Zhang, J.J. Plattner, S.J. Baker, W. Bu, L. Liu, Y. Zhou, C.Z. Ding, and S. Zhang, Synthesis and antiviral activity of novel HCV NS3 protease inhibitors with P4 capping groups, Bioorg. Med. Chem. Lett. 22 (2012), pp. 7351–7356. doi:10.1016/j.bmcl.2012.10.075.
  • M. Llinas-Brunet, M. Bailey, G. Fazal, S. Goulet, T. Halmos, S. Laplante, R. Maurice, M. Poirier, M.-A. Poupart, and D. Thibeault, Peptide-based inhibitors of the hepatitis C virus serine protease, Bioorg. Med. Chem. Lett. 8 (1998), pp. 1713–1718. doi:10.1016/S0960-894X(98)00299-6.
  • M. Llinàs-Brunet, M. Bailey, R. Déziel, G. Fazal, V. Gorys, S. Goulet, T. Halmos, R. Maurice, M. Poirier, and M.-A. Poupart, Studies on the C-terminal of hexapeptide inhibitors of the hepatitis C virus serine protease, Bioorg. Med. Chem. Lett. 8 (1998), pp. 2719–2724. doi:10.1016/S0960-894X(98)00480-6.
  • M. Llinàs-Brunet, M. Bailey, G. Fazal, E. Ghiro, V. Gorys, S. Goulet, T. Halmos, R. Maurice, M. Poirier, and M.-A. Poupart, Highly potent and selective peptide-based inhibitors of the hepatitis C virus serine protease: Towards smaller inhibitors, Bioorg. Med. Chem. Lett. 10 (2000), pp. 2267–2270. doi:10.1016/S0960-894X(00)00465-0.
  • M. Llinas-Brunet, M.D. Bailey, G. Bolger, C. Brochu, A.-M. Faucher, J.M. Ferland, M. Garneau, E. Ghiro, V. Gorys, and C. Grand-Maître, Structure− activity study on a novel series of macrocyclic inhibitors of the hepatitis C virus NS3 protease leading to the discovery of BILN 2061, J. Med. Chem. 47 (2004), pp. 1605–1608. doi:10.1021/jm0342414.
  • M. Llinas-Brunet, M.D. Bailey, N. Goudreau, P.K. Bhardwaj, J. Bordeleau, M. Bös, Y. Bousquet, M.G. Cordingley, J. Duan, and P. Forgione, Discovery of a potent and selective noncovalent linear inhibitor of the hepatitis C virus NS3 protease (BI 201335), J. Med. Chem. 53 (2010), pp. 6466–6476. doi:10.1021/jm100690x.
  • C.C. Parsy, F.-R. Alexandre, V. Bidau, F. Bonnaterre, G. Brandt, C. Caillet, S. Cappelle, D. Chaves, T. Convard, and M. Derock, Discovery and structural diversity of the hepatitis C virus NS3/4A serine protease inhibitor series leading to clinical candidate IDX320, Bioorg. Med. Chem. Lett. 25 (2015), pp. 5427–5436. doi:10.1016/j.bmcl.2015.09.009.
  • Z. Qin, M. Wang, and A. Yan, QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM), Bioorg. Med. Chem. Lett. 27 (2017), pp. 2931–2938. doi:10.1016/j.bmcl.2017.05.001.
  • J.T. Randolph, X. Zhang, P.P. Huang, L.L. Klein, K.A. Kurtz, A.K. Konstantinidis, W. He, W.M. Kati, and D.J. Kempf, Synthesis, antiviral activity, and conformational studies of a P3 aza-peptide analog of a potent macrocyclic tripeptide HCV protease inhibitor, Bioorg. Med. Chem. Lett. 18 (2008), pp. 2745–2750. doi:10.1016/j.bmcl.2008.02.053.
  • P.M. Scola, A.X. Wang, A.C. Good, L.-Q. Sun, K.D. Combrink, J.A. Campbell, J. Chen, Y. Tu, N. Sin, and B.L. Venables, Discovery and early clinical evaluation of BMS-605339, a potent and orally efficacious tripeptidic acylsulfonamide NS3 protease inhibitor for the treatment of hepatitis C virus infection, J. Med. Chem. 57 (2014), pp. 1708–1729. doi:10.1021/jm401840s.
  • X.C. Sheng, H.-J. Pyun, K. Chaudhary, J. Wang, E. Doerffler, M. Fleury, D. McMurtrie, X. Chen, W.E. Delaney IV, and C.U. Kim, Discovery of novel phosphonate derivatives as hepatitis C virus NS3 protease inhibitors, Bioorg. Med. Chem. Lett. 19 (2009), pp. 3453–3457. doi:10.1016/j.bmcl.2009.05.023.
  • F. Shi, Y. Zhang, and W. Xu, Discovery of a series of novel compounds with moderate anti-hepatitis C virus NS3 protease activity in vitro, Bioorg. Med. Chem. 23 (2015), pp. 5539–5545. doi:10.1016/j.bmc.2015.07.032.
  • X. Zhang, A.C. Schmitt, W. Jiang, Z. Wasserman, and C.P. Decicco, Design and synthesis of potent, non-peptide inhibitors of HCV NS3 protease, Bioorg. Med. Chem. Lett. 13 (2003), pp. 1157–1160. doi:10.1016/S0960-894X(03)00032-5.
  • A.M. Veselinović, A. Toropov, A. Toropova, D. Stanković-Đorđević, and J.B. Veselinović, Design and development of novel antibiotics based on FtsZ inhibition–in silico studies, New J. Chem. 42 (2018), pp. 10976–10982. doi:10.1039/C8NJ01034J.
  • A.A. Toropov and A.P. Toropova, Predicting cytotoxicity of 2-phenylindole derivatives against breast cancer cells using index of ideality of correlation, Anticancer Res. 38 (2018), pp. 6189–6194. doi:10.21873/anticanres.12972.
  • S. Ahmadi, Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria, Chemosphere 242 (2020), pp. 125192. doi:10.1016/j.chemosphere.2019.125192.
  • A.P. Toropova, A.A. Toropov, D. Leszczynska, and J. Leszczynski, How the CORAL software can be used to select compounds for efficient treatment of neurodegenerative diseases? Toxicol. Appl. Pharm. 408 (2020), pp. 115276. doi:10.1016/j.taap.2020.115276.
  • S. Ahmadi, E. Babaee, and M.R. Khazaei, Application of self organizing maps and GA-MLR for the estimation of stability constant of 18-crown-6 ether derivatives with sodium cation, J. Incl. Phenom. Macro. 79 (2014), pp. 141–149. doi:10.1007/s10847-013-0337-7.
  • S. Ahmadi and E. Habibpour, Application of GA-MLR for QSAR modeling of the arylthioindole class of tubulin polymerization inhibitors as anticancer agents, Anti-Cancer Agent Me. 17 (2017), pp. 552–565. doi:10.2174/1871520616666160811162105.
  • S. Ahmadi, Application of GA-MLR method in QSPR modeling of stability constants of diverse 15-crown-5 complexes with sodium cation, J. Incl. Phenom. Macro. 74 (2012), pp. 57–66. doi:10.1007/s10847-010-9881-6.
  • R.B. Aher and K. Roy, Exploring the structural requirements in multiple chemical scaffolds for the selective inhibition of Plasmodium falciparum calcium-dependent protein kinase-1 (Pf CDPK-1) by 3D-pharmacophore modelling, and docking studies, SAR and QSAR Environ. Res. 28 (2017), pp. 390–414. doi:10.1080/1062936X.2017.1326401.
  • S.S. Bhayye, K. Roy, and A. Saha, Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A 2A antagonists/MAO‑B inhibitors, SAR QSAR Environ. Res. 27 (2016), pp. 183–202. doi:10.1080/1062936X.2015.1136840.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • L.M. Shi, H. Fang, W. Tong, J. Wu, R. Perkins, R.M. Blair, W.S. Branham, S.L. Dial, C.L. Moland, and D.M. Sheehan, QSAR models using a large diverse set of estrogens, J. Chem. Inf. Comput. Sci. 41 (2001), pp. 186–195. doi:10.1021/ci000066d.
  • G. Schuurmann, R.U. Ebert, J. Chen, B. Wang, and R. Kuhne, External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean, J. Chem. Inf. Model. 48 (2008), pp. 2140–2145. doi:10.1021/ci800253u.
  • P.P. Roy, S. Paul, I. Mitra, and K. Roy, On two novel parameters for validation of predictive QSAR models, Molecules 14 (2009), pp. 1660–1701.
  • K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, and R.N. Das, Some case studies on application of “r(m)2” metrics for judging quality of quantitative structure-activity relationship predictions: Emphasis on scaling of response data, J. Comput. Chem. 34 (2013), pp. 1071–1082. doi:10.1002/jcc.23231.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi:10.1021/ci200211n.
  • K. Roy, S. Kar, and R.N. Das, A Primer on QSAR/QSPR Modeling: Fundamental Concepts, Berlin/Heidelberg (Germany): Springer, 2015.
  • A.A. Toropov and A.P. Toropova, Correlation intensity index: Building up models for mutagenicity of silver nanoparticles, Sci. Total Environ. 737 (2020), pp. 139720. doi:10.1016/j.scitotenv.2020.139720.
  • K. Jafari, M.H. Fatemi, A.P. Toropova, and A.A. Toropov, Correlation Intensity Index (CII) as a criterion of predictive potential: Applying to model thermal conductivity of metal oxide-based ethylene glycol nanofluids, Chem. Phys. Lett. 754 (2020), pp. 137614. doi:10.1016/j.cplett.2020.137614.
  • A.P. Toropova, A.A. Toropov, D. Leszczynska, and J. Leszczynski, The index of ideality of correlation: Models of the flash points of ternary mixtures, New J. Chem. 44 (2020), pp. 4858–4868. doi:10.1039/D0NJ00121J.
  • A. Kumar and P. Kumar, Construction of pioneering quantitative structure activity relationship screening models for abuse potential of designer drugs using index of ideality of correlation in monte carlo optimization, Arch. Toxicol. 94 (2020), pp. 3069–3086. doi:10.1007/s00204-020-02828-w.
  • A.P. Toropova, A.A. Toropov, A.M. Veselinović, J.B. Veselinović, E. Benfenati, D. Leszczynska, and J. Leszczynski, Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions, Ecotox. Environ. Safe. 124 (2016), pp. 32–36. doi:10.1016/j.ecoenv.2015.09.038.
  • M. Javidfar and S. Ahmadi, QSAR modelling of larvicidal phytocompounds against Aedes aegypti using index of ideality of correlation, SAR QSAR Environ. Res. 31 (2020), pp. 717–739. doi:10.1080/1062936X.2020.1806922.
  • S. Ahmadi, F. Mardinia, N. Azimi, M. Qomi, and E. Balali, Prediction of chalcone derivative cytotoxicity activity against MCF-7 human breast cancer cell by Monte Carlo method, J. Mol. Struct. 1181 (2019), pp. 305–311. doi:10.1016/j.molstruc.2018.12.089.
  • A.A. Toropov, N. Sizochenko, A.P. Toropova, D. Leszczynska, and J. Leszczynski, Advancement of predictive modeling of zeta potentials (ζ) in metal oxide nanoparticles with correlation intensity index (CII), J. Mol. Liq. 317 (2020), pp. 113929. doi:10.1016/j.molliq.2020.113929.
  • S. Harper, J.A. McCauley, M.T. Rudd, M. Ferrara, M. DiFilippo, B. Crescenzi, U. Koch, A. Petrocchi, M.K. Holloway, and J.W. Butcher, Discovery of MK-5172, a macrocyclic hepatitis C virus NS3/4a protease inhibitor, ACS Med. Chem. Lett. 3 (2012), pp. 332–336. doi:10.1021/ml300017p.
  • J. Lalezari, J.G. Sullivan, P. Varunok, E. Galen, K.V. Kowdley, V. Rustgi, H. Aguilar, F. Felizarta, B. McGovern, and M. King, Ombitasvir/paritaprevir/r and dasabuvir plus ribavirin in HCV genotype 1-infected patients on methadone or buprenorphine, J. Hepatol. 63 (2015), pp. 364–369. doi:10.1016/j.jhep.2015.03.029.
  • Å. Rosenquist, B. Samuelsson, P.-O. Johansson, M.D. Cummings, O. Lenz, P. Raboisson, K. Simmen, S. Vendeville, H. De Kock, and M. Nilsson, Discovery and development of simeprevir (TMC435), a HCV NS3/4A protease inhibitor, J. Med. Chem. 57 (2014), pp. 1673–1693. doi:10.1021/jm401507s.
  • D.I. Soumana, A. Ali, and C.A. Schiffer, Structural analysis of asunaprevir resistance in HCV NS3/4A protease, ACS Chem. Biol. 9 (2014), pp. 2485–2490. doi:10.1021/cb5006118.
  • C. Lin, A. Kwong, and R. Perni, Discovery and development of VX-950, a novel, covalent, and reversible inhibitor of hepatitis C virus NS3. 4A serine protease, Infect. Disord. Drug Targets 6 (2006), pp. 3–16. doi:10.2174/187152606776056706.
  • N.C. Comelli, E.V. Ortiz, M. Kolacz, A.P. Toropova, A.A. Toropov, P.R. Duchowicz, and E.A. Castro, Conformation-independent QSAR on c-Src tyrosine kinase inhibitors, Chemom. Intell. Lab. 134 (2014), pp. 47–52. doi:10.1016/j.chemolab.2014.03.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.