251
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Insight into the structural requirement of aryl sulphonamide based gelatinases (MMP-2 and MMP-9) inhibitors – Part I: 2D-QSAR, 3D-QSAR topomer CoMFA and Naïve Bayes studies – First report of 3D-QSAR Topomer CoMFA analysis for MMP-9 inhibitors and jointly inhibitors of gelatinases together

, ORCID Icon & ORCID Icon
Pages 655-687 | Received 01 Jun 2021, Accepted 11 Jul 2021, Published online: 06 Aug 2021

References

  • A. Gimeno, R. Beltrán-Debón, M. Mulero, G. Pujadas, and S. Garcia-Vallvé, Understanding the variability of the S1ʹ pocket to improve matrix metalloproteinase inhibitor selectivity profiles, Drug Discov. Today 25 (2020), pp. 38–57. doi:10.1016/j.drudis.2019.07.013.
  • T. Jha, N. Adhikari, A. Saha, and S.A. Amin, Multiple molecular modelling studies on some derivatives and analogues of glutamic acid as matrix metalloproteinase-2 inhibitors, SAR QSAR Environ. Res. 29 (2018), pp. 43–68. doi:10.1080/1062936X.2017.
  • N. Cui, M. Hu, and R.A. Khalil, Biochemical and biological attributes of matrix metalloproteinases, Prog. Mol. Biol. Trans. Sci. 147 (2017), pp. 1–73. doi:10.1016/bs.pmbts.2017.02.005.
  • M. Raeeszadeh-Sarmazdeh, L.D. Do, and B.G. Hritz, Metalloproteinases and their inhibitors: Potential for the development of new therapeutics, Cells 9 (2020), pp. 1313. doi:10.3390/cells9051313.
  • K.W. Min, S.H. Lee, and S.J. Baek, Moonlighting proteins in cancer, Cancer Lett. 370 (2016), pp. 108–116. doi:10.1016/j.canlet.2015.09.022.
  • H. Laronha and J. Caldeira, Structure and function of human matrix metalloproteinases, Cells 9 (2020), pp. 1076. doi:10.3390/cells9051076.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Exploring in house glutamate inhibitors of matrix metalloproteinase-2 through validated robust chemico-biological quantitative approaches, Struct. Chem. 29 (2018), pp. 285–297. doi:10.1007/s11224-017-1028-6.
  • Available at https://www.ebi.ac.uk/chembl. accessed 21 May 2021.
  • K. Li, F.R. Tay, and C.K.Y. Yiu, The past, present and future perspectives of matrix metalloproteinase inhibitors, Pharmacol. Ther. 207 (2020), pp. 107465. doi:10.1016/j.pharmthera.2019.107465.
  • G.B. Fields, The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma, Cells 8 (2019), pp. 984. doi:10.3390/cells8090984.
  • N. Adhikari, A.K. Halder, S. Mallick, A. Saha, K.D. Saha, and T. Jha, Robust design of some selective matrix metalloproteinase-2 inhibitors over matrix metalloproteinase-9 through in silico/fragment-based lead identification and de novo lead modification: Syntheses and biological assays, Bioorg. Med. Chem. 24 (2016), pp. 4291–4309. doi:10.1016/j.bmc.2016.07.023.
  • D.L. Gossage, B. Cieslarová, S. Ap, H. Zheng, Y. Xin, P. Lal, G. Chen, V. Smith, and J.S. Sundy, Phase 1b study of the safety, pharmacokinetics, and disease-related outcomes of the matrix metalloproteinase-9 inhibitor andecaliximab in patients with rheumatoid arthritis, Clin. Ther. 40 (2018), pp. 156–165. doi:10.1016/j.clinthera.2017.11.011.
  • S. Das, S.A. Amin, and T. Jha, Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies, Eur. J. Med. Chem. 223 (2021), pp. 113623. doi:10.1016/j.ejmech.2021.113623.
  • F.X. Gomis-Rüth, Catalytic domain architecture of metzincin metalloproteases, J Biol. Chem. 284 (2009), pp. 15353–15357. doi:10.1074/jbc.R800069200.
  • A.K. Halder, A. Saha, and T. Jha, Exploring QSAR and pharmacophore mapping of structurally diverse selective matrix metalloproteinase-2 inhibitors, J. Pharm. Pharmacol. 65 (2013), pp. 1541–1554. doi:10.1111/jphp.12133.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Structural exploration for the refinement of anticancer matrix metalloproteinase-2 inhibitor designing approaches through robust validated multi-QSARs, J. Mol. Struct. 1156 (2018), pp. 501–515. doi:10.1016/j.molstruc.2017.12.005.
  • S. Sanyal, S.A. Amin, N. Adhikari, and T. Jha, QSAR modelling on a series of arylsulfonamide-based hydroxamates as potent MMP-2 inhibitors, SAR QSAR Environ. Res. 30 (2019), pp. 247–263. doi:10.1080/1062936X.2019.1588159.
  • S. Mondal, S. Banerjee, S.A. Amin, and T. Jha, Structural analysis of arylsulfonamide-based carboxylic acid derivatives: A QSAR study to identify the structural contributors toward their MMP-9 inhibition, Struct. Chem. 32 (2021), pp. 417–430. doi:10.1007/s11224-020-01635-4.
  • J. Verma, V.M. Khedkar, and E.C. Coutinho, 3D-QSAR in drug design–a review, Curr. Top. Med. Chem. 10 (2010), pp. 95–115. doi:10.2174/156802610790232260.
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 57 (2014), pp. 4977–5010. doi:10.1021/jm4004285.
  • E. Pourbasheer, S. Riahi, M.R. Ganjali, and P. Norouzi, QSAR study of C allosteric binding site of HCV NS5B polymerase inhibitors by support vector machine, Mol. Divers. 15 (2011), pp. 645–653. doi:10.1007/s11030-010-9283-0.
  • R. Ragno, A web portal that brings 3-D QSAR to all electronic devices—the Py-CoMFA web application as tool to build models from pre-aligned datasets, J. Comput. Aided Mol. Des. 33 (2019), pp. 855–864. doi:10.1007/s10822-019-00231-x.
  • K. Roy, S. Kar, and R.N. Das, A Primer on QSAR/QSPR Modeling: Fundamental Concepts, Springer, New York, 2015.
  • A.A. Toropov, A.P. Toropova, G. Selvestrel, D. Baderna, and E. Benfenati, Prediction of no observed adverse effect concentration for inhalation toxicity using Monte Carlo approach, SAR QSAR Environ. Res. 31 (2020), pp. 1–12. doi:10.1080/1062936X.2020.1841827.
  • V.V. Kleandrova, M.T. Scotti, L. Scotti, A. Nayarisseri, and A. Speck-Planche, Cell-based multi-target QSAR model for design of virtual versatile inhibitors of liver cancer cell lines, SAR QSAR Environ. Res. 31 (2020), pp. 815–836. doi:10.1080/1062936X.2020.1818617.
  • Z.Y. Algamal, M.K. Qasim, M.H. Lee, and H.T.M. Ali, QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm, SAR QSAR Environ. Res. 31 (2020), pp. 803–814. doi:10.1080/1062936X.2020.1818616.
  • P. Kumar and A. Kumar, In silico enhancement of azo dye adsorption affinity for cellulose fibre through mechanistic interpretation under guidance of QSPR models using Monte Carlo method with index of ideality correlation, SAR QSAR Environ. Res. 31 (2020), pp. 697–715. doi:10.1080/1062936X.2020.1806105.
  • J. Devillers, Methods for building QSARs, Methods Mol. Biol. 930 (2013), pp. 3–27. doi:10.1007/978-1-62703-059-5_1.
  • H. Verma, S. Choudhary, M. Kumar, and O. Silakari, In silico guided design of non-covalent inhibitors of DprE1: Synthesis and biological evaluation, SAR QSAR Environ. Res. 32 (2021), pp. 333–352. doi:10.1080/1062936X.2021.1900390.
  • V.H. Masand, V. Rastija, M.K. Patil, A. Gandhi, and A. Chapolikar, Extending the identification of structural features responsible for anti-SARS-CoV activity of peptide-type compounds using QSAR modelling, SAR QSAR Environ. Res. 31 (2020), pp. 643–654. doi:10.1080/1062936X.2020.1784271.
  • A. Scozzafava and C.T. Supuran, Protease inhibitors: Synthesis of matrix metalloproteinase and bacterial collagenase inhibitors incorporating 5-amino-2-mercapto-1,3,4-thiadiazole zinc binding functions, Bioorg. Med. Chem. Lett. 12 (2002), pp. 2667–2672. doi:10.1016/s0960-894x(02)00564-4.
  • A. Scozzafava and C.T. Supuran, Carbonic anhydrase and matrix metalloproteinase inhibitors: Sulfonylated amino acid hydroxamates with MMP inhibitory properties act as efficient inhibitors of CA isozymes I, II, and IV, and N-hydroxysulfonamides inhibit both these zinc enzymes, J. Med. Chem. 43 (2000), pp. 3677–3687. doi:10.1021/jm000027t.
  • A. Scozzafava and C.T. Supuran, Protease inhibitors: Synthesis of potent bacterial collagenase and matrix metalloproteinase inhibitors incorporating N-4-nitrobenzylsulfonylglycine hydroxamate moieties, J. Med. Chem. 43 (2000), pp. 1858–1865. doi:10.1021/jm990594k.
  • ChemDraw Ultra 5.0, Cambridge Soft Corporation, USA, 2010.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • M. Shahlaei, Descriptor selection methods in quantitative structure-activity relationship studies: A review study, Chem. Rev. 113 (2013), pp. 8093–8103. doi:10.1021/cr3004339.
  • V.N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed., Springer, New York, 2000.
  • QSAR Tools, DTC Laboratory, India, 2015; Software available at https://dtclab.webs.com/software-tools accessed 22 January 2021.
  • A. Golbraikh and A. Tropsha, Beware of q2! J. Mol. Graph Model. 20 (2002), pp. 269–276. doi:10.1016/s1093-3263(01)00123-1.
  • F. Sadeghi, A. Afkhami, T. Madrakian, and R. Ghavami, Computational study on subfamilies of piperidine derivatives: QSAR modelling, model external verification, the inter-subset similarity determination, and structure-based drug designing, SAR QSAR Environ. Res. 32 (2021), pp. 433–462. doi:10.1080/1062936X.2021.1891568.
  • D. Kovács, P. Király, and G. Tóth, Sample-size dependence of validation parameters in linear regression models and in QSAR, SAR QSAR Environ. Res. 32 (2021), pp. 247–268. doi:10.1080/1062936X.2021.1890208.
  • C. Nantasenamat, A. Worachartcheewan, S. Prachayasittikul, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul, QSAR modeling of aromatase inhibitory activity of 1-substituted 1,2,3-triazole analogs of letrozole, Eur. J. Med. Chem. 69 (2013), pp. 99–114. doi:10.1016/j.ejmech.2013.08.015.
  • T.C. Smith and E. Frank, Introducing machine learning concepts with WEKA, Methods Mol. Biol. 1418 (2016), pp. 353–378. doi:10.1007/978-1-4939-3578-9_17.
  • J. Tong, D. Luo, X. Zhang, and S. Bian, Design of novel SHP2 inhibitors using topomer CoMFA, HQSAR analysis, and molecular docking, Struct. Chem. 32 (2021), pp. 1061–1076. doi:10.1007/s11224-020-01677-8.
  • D.M. Chhatbar, U.J. Chaube, V.K. Vyas, and H.G. Bhatt, CoMFA, CoMSIA, topomer CoMFA, HQSAR, molecular docking and molecular dynamics simulations study of triazine morpholino derivatives as mTOR inhibitors for the treatment of breast cancer, Comput. Biol. Chem. 80 (2019), pp. 351–363. doi:10.1016/j.compbiolchem.2019.04.017.
  • J. Tong, F. Yi, D. Luo, and T. Wang, QSAR studies of sulfonamide hydroxamates derivatives as mmp-2 inhibitors topomer CoMFA and molecular docking, Lett. Drug Des. Discov. 17 (2020), pp. 1364–1371. doi:10.2174/1570180817999200630124920.
  • B. Niu, Y. Lu, J. Wang, Y. Hu, J. Chen, Q. Chen, G. He, and L. Zheng, 2D-SAR, topomer CoMFA and molecular docking studies on avian influenza neuraminidase inhibitors, Comput. Struct. Biotechnol. J. 17 (2018), pp. 39–48. doi:10.1016/j.csbj.2018.11.007.
  • SYBYL-X 2.0. Tripos Inc, St. Louis, MO, 2015; Software available at http://www.certara.com
  • L. Wang, L. Chen, Z. Liu, M. Zheng, Q. Gu, and J. Xu, Predicting mTOR inhibitors with a classifier using recursive partitioning and Naïve Bayesian approaches, PLoS One 9 (2014), pp. e95221. doi:10.1371/journal.pone.0095221.
  • L. Chen, Y. Li, Q. Zhao, H. Peng, and T. Hou, ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques, Mol. Pharm. 8 (2011), pp. 889–900. doi:10.1021/mp100465q.
  • H. Zhang, L. Ding, Y. Zou, S.Q. Hu, H.G. Huang, W.B. Kong, and J. Zhang, Predicting drug-induced liver injury in human with Naïve Bayes classifier approach, J. Comput. Aided Mol. Des. 30 (2016), pp. 889–898. doi:10.1007/s10822-016-9972-6.
  • L.L. Liu, J. Lu, Y. Lu, M.Y. Zheng, X.M. Luo, W.L. Zhu, H.L. Jiang, and K.X. Chen, Novel Bayesian classification models for predicting compounds blocking hERG potassium channels, Acta Pharmacol. Sin. 35 (2014), pp. 1093–1102. doi:10.1038/aps.2014.35.
  • D. Rogers and M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 (2010), pp. 742–754. doi:10.1021/ci100050t.
  • D. Rogers, R.D. Brown, and M. Hahn, Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up, J. Biomol. Screen. 10 (2005), pp. 682–686. doi:10.1177/1087057105281365.
  • Discovery studio 3.0. Accelrys Inc., San Diego, USA, 2015; Software available at http://www.accelrys.com
  • T. Fawcett, An introduction to ROC analysis, Patt. Recogn. Lett. 27 (2006), pp. 861–874. doi:10.1016/j.patrec.2005.10.010.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Cheminformatics, 2nd ed., Vol. 2, Wiley, Weinheim, 2009.
  • E. Pourbasheer, S. Vahdani, D. Malekzadeh, R. Aalizadeh, and A. Ebadi, QSAR study of 17β-HSD3 inhibitors by genetic algorithm-support vector machine as a target receptor for the treatment of prostate cancer, Iran. J. Pharm. Res. 16 (2017), pp. 966–980.
  • R.D. Cramer, D.E. Patterson, and J.D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc. 110 (1988), pp. 5959–5967. doi:10.1021/ja00226a005.
  • S.L. Dixon, A.M. Smondyrev, E.H. Knoll, S.N. Rao, D.E. Shaw, and R.A. Friesner, PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results, J. Comput. Aided Mol. Des. 20 (2006), pp. 647–671. doi:10.1007/s10822-006-9087-6.
  • R.D. Cramer, Topomer CoMFA: A design methodology for rapid lead optimization, J. Med. Chem. 46 (2003), pp. 374–388. doi:10.1021/jm020194o.
  • B. Wendt, M. Mulbaier, S. Wawro, C. Schultes, J. Alonso, B. Janssen, and J. Lewis, Toluidinesulfonamide hypoxia-induced factor 1 inhibitors: Alleviating drug-drug interactions through use of PubChem data and comparative molecular field analysis guided synthesis, J. Med. Chem. 54 (2011), pp. 3982–3986. doi:10.1021/jm200272h.
  • B. Sepehri and R. Ghavami, Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4-amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides, SAR QSAR Environ. Res. 30 (2019), pp. 21–38. doi:10.1080/1062936X.2018.1545695.
  • J. Zheng, R. Wen, and D. Guillaume, Three-dimensional quantitative structure-activity relationship (CoMFA and CoMSIA) studies on galardin derivatives as gelatinase A (matrix metalloproteinase 2) inhibitors, J. Enzyme. Inhib. Med. Chem. 23 (2008), pp. 445–453. doi:10.1080/14756360701632221.
  • L. Xi, J. Du, S. Li, J. Li, H. Liu, and X. Yao, A combined molecular modeling study on gelatinases and their potent inhibitors, J. Comput. Chem 31 (2010), pp. 24–42. doi:10.1002/jcc.21279.
  • K.M. Turra, D.P. Rivelli, S.B. de Moraes Barros, and K.F.M. Pasqualoto, Predicting novel antitumor agents: 3D-pharmacophore mapping of β-n-biaryl ether sulfonamide-based hydroxamates as potentially MMP-2 inhibitors, Mol. Inf. 33 (2014), pp. 573–587. doi:10.1002/minf.201400073.
  • X.Q. Yan, Z.C. Wang, Z. Li, P.F. Wang, H.Y. Qiu, L.W. Chen, X.Y. Lu, P.C. Lv, and H.L. Zhu, Sulfonamide derivatives containing dihydropyrazole moieties selectively and potently inhibit MMP-2/MMP-9: Design, synthesis, inhibitory activity and 3D-QSAR analysis, Bioorg. Med. Chem. Lett. 25 (2015), pp. 4664–4671. doi:10.1016/j.bmcl.2015.08.026.
  • J. Zhang, X.J. Wang, Z.K. Dong, S.Q. Wang, W.R. Xu, J.W. Fu, X.C. Cheng, and R.L. Wang, CoMFA/CoMSIA and molecular docking studies of novel matrix metalloproteinase- 2 inhibitors based on L-tyrosine scaffold, Lett. Drug Des. Discov. 13 (2016), pp. 376–386. doi:10.2174/1570180812666150923235104.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Understanding chemico-biological interactions of glutamate MMP-2 inhibitors through rigorous alignment-dependent 3D-QSAR analyses, ChemistrySelect 2 (2017), pp. 7888–7898. doi:10.1002/slct.201701330.
  • D. Rathee, V. Lather, and H. Dureja, Pharmacophore modeling and 3D QSAR studies for prediction of matrix metalloproteinases inhibitory activity of hydroxamate derivatives, Biotechnol. Res. Innov. 1 (2017), pp. 112–122. doi:10.1016/j.biori.2017.10.002.
  • Z.C. Wang, F.Q. Shen, M.R. Yang, L.X. You, L.Z. Chen, H.L. Zhu, Y.D. Lu, F.L. Kong, and M.H. Wang, Dihydropyrazothiazole derivatives as potential MMP-2/MMP-8 inhibitors for cancer therapy, Bioorg. Med. Chem. Lett. 28 (2018), pp. 3816–3821. doi:10.1016/j.bmcl.2018.05.004.
  • S. Kalva, D. Vinod, and L.M. Saleena, Field- and Gaussian-based 3D-QSAR studies on barbiturate analogs as MMP-9 inhibitors, Med. Chem. Res. 22 (2013), pp. 5303–5313. doi:10.1007/s00044-013-0479-6.
  • D. Rathee, V. Lather, and H. Dureja, Prediction of MMP-9 inhibitory activity of N-hydroxy-α-phenylsulfonylacetamide derivatives by pharmacophore based modeling and 3-D QSAR studies, Porto. Biomed. J. 3 (2018), pp. e6. doi:10.1016/j.pbj.0000000000000006.
  • S. Jana and S.K. Singh, Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches, J. Biomol. Struct. Dyn. 37 (2019), pp. 944–965. doi:10.1080/07391102.2018.1444510.
  • K. Roy, D.K. Pal, A.U. De, and C. Sengupta, QSAR of matrix metalloproteinase inhibitor N-[(substituted phenyl)sulfonyl]-N-4-nitrobenzylglycine hydroxamates using LFER model, Drug Des. Discov. 17 (2001), pp. 315–323.
  • D. Kumar and S.P. Gupta, A quantitative structure–activity relationship study on some matrix metalloproteinase and collagenase inhibitors, Bioorg. Med. Chem. 11 (2003), pp. 421–426. doi:10.1016/s0968-0896(02)00438-8.
  • S.P. Gupta, D. Kumar, and S. Kumaran, A quantitative structure–activity relationship study of hydroxamate matrix metalloproteinase inhibitors derived from functionalized 4-aminoprolines, Bioorg. Med. Chem. 11 (2003), pp. 1975–1981. doi:10.1016/s0968-0896(03)00069-5.
  • S.P. Gupta, V. Maheswaran, V. Pande, and D. Kumar, A comparative QSAR study on carbonic anhydrase and matrix metalloproteinase inhibition by sulfonylated amino acid hydroxamates, J. Enzyme. Inhib. Med. Chem. 18 (2003), pp. 7–13. doi:10.1080/1475636021000049735.
  • M. Fernández, J. Caballero, and A. Tundidor-Camba, Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors, Bioorg. Med. Chem. 14 (2006), pp. 4137–4150. doi:10.1016/j.bmc.2006.01.072.
  • S.P. Gupta and S. Kumaran, Quantitative structure-activity relationship studies on matrix metalloproteinase inhibitors: Hydroxamic acid analogs, Med. Chem. 2 (2006), pp. 243–250. doi:10.2174/157340606776930790.
  • R.P. Verma and C. Hansch, Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs, Bioorg. Med. Chem. 15 (2007), pp. 2223–2268. doi:10.1016/j.bmc.2007.01.011.
  • O. Nicolotti, M. Catto, I. Giangreco, M. Barletta, F. Leonetti, A. Stefanachi, L. Pisani, S. Cellamare, P. Tortorella, F. Loiodice, and A. Carotti, Design, synthesis and biological evaluation of 5-hydroxy, 5-substituted-pyrimidine-2,4,6-triones as potent inhibitors of gelatinases MMP-2 and MMP-9, Eur. J. Med. Chem. 58 (2012), pp. 368–376. doi:10.1016/j.ejmech.2012.09.036.
  • R.P. Verma, A. Kurup, and C. Hansch, On the role of polarizability in QSAR, Bioorg. Med. Chem. 13 (2005), pp. 237–255. doi:10.1016/j.bmc.2004.09.039.
  • S.P. Gupta and S. Kumaran, A quantitative structure–activity relationship study on some series of anthranilic acid-based matrix metalloproteinase inhibitors, Bioorg. Med. Chem. 13 (2005), pp. 5454–5462. doi:10.1016/j.bmc.2005.05.055.
  • S.P. Gupta and S. Kumaran, Quantitative structure-activity relationship studies on matrix metalloproteinase inhibitors: Bicyclic heteroaryl hydroxamic acid analogs, Lett. Drug Des. Discov. 2 (2005), pp. 522–528. doi:10.2174/157018005774479096.
  • S.P. Gupta and S. Kumaran, Quantitative structure-activity relationship studies on matrix metalloproteinase inhibitors: Piperazine, piperidine and diazepine hydroxamic acid analogs, Asian J. Biochem. 1 (2006), pp. 211–223. doi:10.3923/ajb.2006.211.223.
  • S.P. Gupta and S. Kumaran, Quantitative structure-activity relationship studie s on benzodiazepine hydroxamic acid inhibitors of matrix metalloproteinases an d tumor necrosis factor-α converting enzyme, Asian J. Biochem. 1 (2006), pp. 47–56. doi:10.3923/ajb.2006.47.56.
  • M. Fernández and J. Caballero, QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-alpha-phenylsulfonylacetamide derivatives, Bioorg. Med. Chem. 15 (2007), pp. 6298–626310. doi:10.1016/j.bmc.2007.06.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.