515
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Identifications of good and bad structural fragments of hydrazone/2,5-disubstituted-1,3,4-oxadiazole hybrids with correlation intensity index and consensus modelling using Monte Carlo based QSAR studies, their molecular docking and ADME analysis

ORCID Icon, , , ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 677-700 | Received 14 Jun 2022, Accepted 25 Aug 2022, Published online: 12 Sep 2022

References

  • J. Wojciechowska, W. Krajewski, M. Bolanowski, T. Kręcicki, and T. Zatoński, Diabetes and cancer: A review of current knowledge, Exp. Clin. Endocrinol. Diabetes 124 (2016), pp. 263–275. doi:10.1055/s-0042-100910.
  • U. Galicia-Garcia, A. Benito-Vicente, S. Jebari, A. Larrea-Sebal, H. Siddiqi, K.B. Uribe, H. Ostolaza, and C. Martín, Pathophysiology of type 2 diabetes mellitus, Int. J. Mol. Sci. 21 (2020), pp. 6275. doi:10.3390/ijms21176275.
  • B.O. Roep, S. Thomaidou, R. van Tienhoven, and A. Zaldumbide, Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?), Nat. Rev. Endocrinol. 17 (2021), pp. 150–161. doi:10.1038/s41574-020-00443-4.
  • F. Zhong and Y. Jiang, Endogenous pancreatic β cell regeneration: A potential strategy for the recovery of β cell deficiency in diabetes, Front. Endocrinol. 10 (2019). doi:10.3389/fendo.2019.00101.
  • P. Zhou, W. Xie, S. He, Y. Sun, X. Meng, G. Sun, and X. Sun, Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis, Cells 8 (2019), pp. 204. doi:10.3390/cells8030204.
  • M. Hatting, C.D.J. Tavares, K. Sharabi, A.K. Rines, and P. Puigserver, Insulin regulation of gluconeogenesis, Ann. N. Y. Acad. Sci. 1411 (2018), pp. 21–35. doi:10.1111/nyas.13435.
  • V. Krishnan, R. Rani, M. Awana, D. Pitale, A. Kulshreshta, S. Sharma, H. Bollinedi, A. Singh, B. Singh, A.K. Singh, and S. Praveen, Role of nutraceutical starch and proanthocyanidins of pigmented rice in regulating hyperglycemia: Enzyme inhibition, enhanced glucose uptake and hepatic glucose homeostasis using in vitro model, Food Chem. 335 (2021), pp. 127505. doi:10.1016/j.foodchem.2020.127505.
  • O. Abid, S. Imran, M. Taha, N.H. Ismail, W. Jamil, S.M. Kashif, K.M. Khan, and J. Yusoff, Synthesis, β-glucuronidase inhibition and molecular docking studies of cyano-substituted bisindole hydrazone hybrids, Mol. Divers. 25 (2021), pp. 995–1009. doi:10.1007/s11030-020-10084-4.
  • A.E. Von Ah Morano, G.P. Dorneles, A. Peres, and F.S. Lira, The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions, J. Cell. Physiol. 235 (2020), pp. 3169–3188. doi:10.1002/jcp.29228.
  • S. Padhi, A.K. Nayak, and A. Behera, Type II diabetes mellitus: A review on recent drug based therapeutics, Biomed. Pharmacother. 131 (2020), pp. 110708. doi:10.1016/j.biopha.2020.110708.
  • A.K.D. Bin Ahmad Kamar, L. Ju Yin, C. Tze Liang, G. Tjin Fung, and V.R. Avupati, Rhodanine scaffold: A review of antidiabetic potential and structure–activity relationships (SAR), Med. Drug Discov. 15 (2022), pp. 100131. doi:10.1016/j.medidd.2022.100131.
  • A. Rammohan, B.V. Bhaskar, N. Venkateswarlu, W. Gu, and G.V. Zyryanov, Design, synthesis, docking and biological evaluation of chalcones as promising antidiabetic agents, Bioorg. Chem. 95 (2020), pp. 103527. doi:10.1016/j.bioorg.2019.103527.
  • A.K. Ghosh, W.L. Robinson, J. Gulliver, and H.M. Simpson, Convergent synthesis of (+)-carambolaflavone A, an antidiabetic agent using a bismuth triflate-catalyzed C-aryl glycosylation, Org. Biomol. Chem. 20 (2022), pp. 2822–2830. doi:10.1039/D2OB00038E.
  • P. Kumar, M. Duhan, K. Kadyan, J. Sindhu, S. Kumar, and H. Sharma, Synthesis of novel inhibitors of α-amylase based on the thiazolidine-4-one skeleton containing a pyrazole moiety and their configurational studies, MedChemComm 8 (2017), pp. 1468–1476. doi:10.1039/C7MD00080D.
  • P. Kumar, M. Duhan, J. Sindhu, K. Kadyan, S. Saini, and N. Panihar, Thiazolidine-4-one clubbed pyrazoles hybrids: Potent α-amylase and α-glucosidase inhibitors with NLO properties, J. Heterocycl. Chem. 57 (2020), pp. 1573–1587. doi:10.1002/jhet.3882.
  • G.-J. Ye, T. Lan, Z.-X. Huang, X.-N. Cheng, C.-Y. Cai, S.-M. Ding, M.-L. Xie, and B. Wang, Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-glucosidase inhibition and glucose uptake promotion, Eur. J. Med. Chem. 177 (2019), pp. 362–373. doi:10.1016/j.ejmech.2019.05.045.
  • M. Gollapalli, M. Taha, M.T. Javid, N.B. Almandil, F. Rahim, A. Wadood, A. Mosaddik, M. Ibrahim, M.A. Alqahtani, and Y.A. Bamarouf, Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor, Bioorg. Chem. 85 (2019), pp. 33–48. doi:10.1016/j.bioorg.2018.12.021.
  • M. Bule, N. Jalalimanesh, Z. Bayrami, M. Baeeri, and M. Abdollahi, The rise of deep learning and transformations in bioactivity prediction power of molecular modeling tools, Chem. Biol. Drug Des. 98 (2021), pp. 954–967. doi:10.1111/cbdd.13750.
  • L. Zhao, H.L. Ciallella, L.M. Aleksunes, and H. Zhu, Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling, Drug Discov. Today 25 (2020), pp. 1624–1638. doi:10.1016/j.drudis.2020.07.005.
  • P. Kumar and A. Kumar, Nucleobase sequence based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method, J. Biomol. Struct. Dyn. 38 (2020), pp. 3296–3306. doi:10.1080/07391102.2019.1656109.
  • S. Ahmadi, S. Lotfi, and P. Kumar, A Monte Carlo method based QSPR model for prediction of reaction rate constants of hydrated electrons with organic contaminants, SAR QSAR Environ. Res. 31 (2020), pp. 935–950. doi:10.1080/1062936X.2020.1842495.
  • M. Nimbhal, K. Bagri, P. Kumar, and A. Kumar, The index of ideality of correlation: A statistical yardstick for better QSAR modeling of glucokinase activators, Struct. Chem. 31 (2019), pp. 831–839. doi:10.1007/s11224-019-01468-w.
  • S.C. Manisha, P. Kumar, and A. Kumar, Development of prediction model for fructose-1,6- bisphosphatase inhibitors using the Monte Carlo method, SAR QSAR Environ. Res. 30 (2019), pp. 145–159. doi:10.1080/1062936X.2019.1568299.
  • A. Kumar and P. Kumar, Prediction of power conversion efficiency of phenothiazine-based dye-sensitized solar cells using Monte Carlo method with index of ideality of correlation, SAR QSAR Environ. Res. 32 (2021), pp. 817–834. doi:10.1080/1062936X.2021.1973095.
  • A. Kumar and P. Kumar, Quantitative structure toxicity analysis of ionic liquids toward acetylcholinesterase enzyme using novel QSTR models with index of ideality of correlation and correlation contradiction index, J. Mol. Liq. 318 (2020), pp. 114055. doi:10.1016/j.molliq.2020.114055.
  • K. Bagri, A. Kumar, M. Nimbhal, and P. Kumar, Index of ideality of correlation and correlation contradiction index: A confluent perusal on acetylcholinesterase inhibitors, Mol. Simul. 46 (2020), pp. 777–786. doi:10.1080/08927022.2020.1770753.
  • A. Kumar and P. Kumar, Identification of good and bad fragments of tricyclic triazinone analogues as potential PKC-θ inhibitors through SMILES–based QSAR and molecular docking, Struct. Chem. 32 (2020), pp. 149–165. doi:10.1007/s11224-020-01629-2.
  • A.A. Toropov, R. Carbó-Dorca, and A.P. Toropova, Index of ideality of correlation: New possibilities to validate QSAR: A case study, Struct. Chem. 29 (2018), pp. 33–38. doi:10.1007/s11224-017-0997-9.
  • P. Kumar and A. Kumar, CORAL: QSAR models of CB1 cannabinoid receptor inhibitors based on local and global SMILES attributes with the index of ideality of correlation and the correlation contradiction index, Chemom. Intell. Lab. Syst. 200 (2020), pp. 103982. doi:10.1016/j.chemolab.2020.103982.
  • P. Kumar and A. Kumar, Correlation intensity index (CII) as a benchmark of predictive potential: Construction of quantitative structure activity relationship models for anti-influenza single-stranded DNA aptamers using Monte Carlo optimization, J. Mol. Struct. 1246 (2021), pp. 131205. doi:10.1016/j.molstruc.2021.131205.
  • A. Kumar and P. Kumar, Cytotoxicity of quantum dots: Use of quasiSMILES in development of reliable models with index of ideality of correlation and the consensus modelling, J. Hazard. Mater. 402 (2021), pp. 123777. doi:10.1016/j.jhazmat.2020.123777.
  • K. Roy, P. Ambure, S. Kar, and P.K. Ojha, Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J. Chemom. 32 (2018), pp. e2992. doi:10.1002/cem.2992.
  • P. Kumar and A. Kumar, Unswerving modeling of hepatotoxicity of cadmium containing quantum dots using amalgamation of quasiSMILES, index of ideality of correlation, and consensus modeling, Nanotoxicology 15 (2021), pp. 1199–1214. doi:10.1080/17435390.2021.2008039.
  • M. Duhan, J. Sindhu, P. Kumar, M. Devi, R. Singh, R. Kumar, S. Lal, A. Kumar, S. Kumar, and K. Hussain, Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation, J. Biomol. Struct. Dyn. (2020), pp. 1–22. doi:10.1080/07391102.2020.1863861.
  • M. Duhan, P. Kumar, J. Sindhu, R. Singh, M. Devi, A. Kumar, R. Kumar, and S. Lal, Exploring biological efficacy of novel benzothiazole linked 2,5-disubstituted-1,3,4-oxadiazole hybrids as efficient α-amylase inhibitors: Synthesis, characterization, inhibition, molecular docking, molecular dynamics and Monte Carlo based QSAR studies, Comput. Biol. Med. 138 (2021), pp. 104876. doi:10.1016/j.compbiomed.2021.104876.
  • A.K. Halder, Finding the structural requirements of diverse HIV-1 protease inhibitors using multiple QSAR modelling for lead identification, SAR QSAR Environ. Res. 29 (2018), pp. 911–933. doi:10.1080/1062936X.2018.1529702.
  • W. Liman, M. Oubahmane, I. Hdoufane, I. Bjij, D. Villemin, R. Daoud, D. Cherqaoui, and A. El Allali, Monte Carlo method and GA-MLR-Based QSAR modeling of NS5A inhibitors against the hepatitis C virus, Molecules 27 (2022), pp. 2729. doi:10.3390/molecules27092729.
  • S. Ahmadi, S. Lotfi, S. Afshari, P. Kumar, and E. Ghasemi, CORAL: Monte Carlo based global QSAR modelling of Bruton tyrosine kinase inhibitors using hybrid descriptors, SAR QSAR Environ. Res. 32 (2021), pp. 1013–1031. doi:10.1080/1062936X.2021.2003429.
  • A.A. Toropov and A.P. Toropova, Correlation intensity index: Building up models for mutagenicity of silver nanoparticles, Sci. Total Environ. 737 (2020), pp. 139720. doi:10.1016/j.scitotenv.2020.139720.
  • A.P. Toropova, A.A. Toropov, A. Lombardo, G. Lavado, and E. Benfenati, Paradox of ‘ideal correlations’: Improved model for air half-life of persistent organic pollutants, Environ. Technol. 43 (2022), pp. 2510–2515. doi:10.1080/09593330.2021.1882588.
  • P. De, S. Kar, P. Ambure, and K. Roy, Prediction reliability of QSAR models: An overview of various validation tools, Arch. Toxicol. 96 (2022), pp. 1279–1295. doi:10.1007/s00204-022-03252-y.
  • A.K. Halder, A.S. Moura, and M.N.D.S. Cordeiro, QSAR modelling: A therapeutic patent review 2010-present, Expert Opin. Ther. Pat. 28 (2018), pp. 467–476. doi:10.1080/13543776.2018.1475560.
  • A.A. Toropov and A.P. Toropova, QSAR as a random event: Criteria of predictive potential for a chance model, Struct. Chem. 30 (2019), pp. 1677–1683. doi:10.1007/s11224-019-01361-6.
  • T. Huang, G. Sun, L. Zhao, N. Zhang, R. Zhong, and Y. Peng, Quantitative structure-activity relationship (QSAR) studies on the toxic effects of nitroaromatic compounds (NACs): A systematic review, Int. J. Mol. Sci. 22 (2021), pp. 8557. doi:10.3390/ijms22168557.
  • A.A. Toropov and A.P. Toropova, The index of ideality of correlation: A criterion of predictive potential of QSPR/QSAR models? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 819 (2017), pp. 31–37. doi:10.1016/j.mrgentox.2017.05.008.
  • S. Kar, K. Roy, and J. Leszczynski, Applicability domain: A step toward confident predictions and decidability for QSAR modeling, Comput. Toxicol. (2018), pp. 141–169. O. Nicolotti, ed., Springer New York, New York. doi:10.1007/978-1-4939-7899-1_6.
  • Y. Tian, S. Zhang, H. Yin, and A. Yan, Quantitative structure-activity relationship (QSAR) models and their applicability domain analysis on HIV-1 protease inhibitors by machine learning methods, Chemom. Intell. Lab. Syst. 196 (2020), pp. 103888. doi:10.1016/j.chemolab.2019.103888.
  • T. Ghiasi, S. Ahmadi, E. Ahmadi, M.R. Talei Bavil Olyai, and Z. Khodadadi, The index of ideality of correlation: QSAR studies of hepatitis C virus NS3/4A protease inhibitors using SMILES descriptors, SAR QSAR Environ. Res. 32 (2021), pp. 495–520. doi:10.1080/08927022.2020.1770753.
  • P. Kumar and A. Kumar, In silico enhancement of azo dye adsorption affinity for cellulose fibre through mechanistic interpretation under guidance of QSPR models using Monte Carlo method with index of ideality correlation, SAR QSAR Environ. Res. 31 (2020), pp. 697–715. doi:10.1080/1062936X.2020.1806105.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461. doi:10.1002/jcc.21334.
  • K. Jafari, M.H. Fatemi, A.P. Toropova, and A.A. Toropov, Correlation intensity index (CII) as a criterion of predictive potential: Applying to model thermal conductivity of metal oxide-based ethylene glycol nanofluids, Chem. Phys. Lett. 754 (2020), pp. 137614. doi:10.1016/j.cplett.2020.137614.
  • S. Ahmadi, A.P. Toropova, and A.A. Toropov, Correlation intensity index: Mathematical modeling of cytotoxicity of metal oxide nanoparticles, Nanotoxicology 14 (2020), pp. 1118–1126. doi:10.1080/17435390.2020.1808252.
  • A.A. Toropov, N. Sizochenko, A.P. Toropova, D. Leszczynska, and J. Leszczynski, Advancement of predictive modeling of zeta potentials (ζ) in metal oxide nanoparticles with correlation intensity index (CII), J. Mol. Liq. 317 (2020), pp. 113929. doi:10.1016/j.molliq.2020.113929.
  • P. Kumar, A. Kumar, and D. Singh, CORAL: Development of a hybrid descriptor based QSTR model to predict the toxicity of dioxins and dioxin-like compounds with correlation intensity index and consensus modelling, Environ. Toxicol. Pharmacol. 93 (2022), pp. 103893. doi:10.1016/j.etap.2022.103893.
  • P. Kumar, A. Kumar, S. Lal, D. Singh, S. Lotfi, and S. Ahmadi, CORAL: Quantitative Structure Retention Relationship (QSRR) of flavors and fragrances compounds studied on the stationary phase methyl silicone OV-101 column in gas chromatography using correlation intensity index and consensus modelling, J. Mol. Struct. 1265 (2022), pp. 133437. doi:10.1016/j.molstruc.2022.133437.
  • E.-S.N. Khaldun, M. Al Azzam, and H.Y. Aboul-Enein, ADME studies of TUG-770 (a GPR-40 inhibitor agonist) for the treatment of type 2 diabetes using SwissADME predictor: In silico study, J. Appl. Pharm. Sci. 12 (2022), pp. 159–169. doi:10.7324/JAPS.2022.120418.
  • Z.Y. Ibrahim, A. Uzairu, G.A. Shallangwa, and S.E. Abechi, Application of QSAR method in the design of enhanced antimalarial derivatives of azetidine-2-carbonitriles, their molecular docking, drug-likeness, and SwissADME properties, Iran. J. Pharm. Res. 20 (2021), pp. 254–270. doi:10.22037/ijpr.2021.114536.14901.
  • Y. Sicak, Design and antiproliferative and antioxidant activities of furan-based thiosemicarbazides and 1,2,4-triazoles: Their structure-activity relationship and SwissADME predictions, Med. Chem. Res. 30 (2021), pp. 1557–1568. doi:10.1007/s00044-021-02756-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.