243
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Two QSAR models for predicting the toxicity of chemicals towards Tetrahymena pyriformis based on topological-norm descriptors and spatial-norm descriptors

, , , &
Pages 147-161 | Received 28 Nov 2022, Accepted 17 Jan 2023, Published online: 07 Feb 2023

References

  • E. Sanganyado and T.A. Kajau, The fate of emerging pollutants in aquatic systems: An overview, in Emerging Freshwater Pollutants, T. Dalu and N.T. Tavengwa, eds., Elsevier, Amsterdam, 2022, pp. 119–135.
  • H.A. Ahmad, S. Ahmad, Q. Cui, Z. Wang, H. Wei, X. Chen, S.Q. Ni, S. Ismail, H.M. Awad, and A. Tawfik, The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review, Sci. Total Environ. 809 (2021), pp. 151926. doi:10.1016/j.scitotenv.2021.151926.
  • M. Lorenzo, J. Campo, and Y. Picó, Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems, Trends Anal. Chem. 103 (2018), pp. 137–155. doi:10.1016/j.trac.2018.04.003.
  • W.K. Dodds and M.R. Whiles, Responses to stress, toxic chemicals, and other pollutants in aquatic ecosystems, Freshwater Ecol. (2020), pp. 453–502. doi:10.1016/b978-0-12-813255-5.00016-8.
  • O.I. Dar, R. Aslam, D. Pan, S. Sharma, M. Andotra, A. Kaur, A.-Q. Jia, and C. Faggio, Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: A review, Environ.Technol. Innov. 25 (2022), pp. 102122. doi:10.1016/j.eti.2021.102122.
  • U.G. Ahlborg, A. Brouwer, M.A. Fingerhut, J.L. Jacobson, S.W. Jacobson, S.W. Kennedy, A.A.F. Kettrup, J.H. Koeman, H. Poiger, C. Rappe, S.H. Safe, R.F. Seegal, T. Jouko, and M. van den Berg, Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental health, with special emphasis on application of the toxic equivalency factor concept, Eur. J. Pharmacol.: Environ. Toxicol. Pharmacol. 228 (1992), pp. 179–199. doi:10.1016/0926-6917(92)90029-c.
  • J. Park, Y. Kim, H.J. Jeon, K. Kim, C. Kim, S. Lee, J. Son, and S.E. Lee, Acute and developmental toxic effects of mono-halogenated and halomethyl naphthalenes on zebrafish (Danio rerio) embryos: Cardiac malformation after 2-bromomethyl naphthalene exposure, Environ Pollut. 297 (2022), pp. 118786. doi:10.1016/j.envpol.2021.118786.
  • Y. Dogra, A.G. Scarlett, D. Rowe, T.S. Galloway, and S.J. Rowland, Predicted and measured acute toxicity and developmental abnormalities in zebrafish embryos produced by exposure to individual aromatic acids, Chemosphere 205 (2018), pp. 98–107. doi:10.1016/j.chemosphere.2018.04.079.
  • R. Maurya and A.K. Pandey, Importance of protozoa Tetrahymena in toxicological studies: A review, Sci. Total Environ. 741 (2020), pp. 140058. doi:10.1016/j.scitotenv.2020.140058.
  • A.N.M. Eriksson, C. Rigaud, A. Rokka, M. Skaugen, J.H. Lihavainen, and E.R. Vehniainen, Changes in cardiac proteome and metabolome following exposure to the PAHs retene and fluoranthene and their mixture in developing rainbow trout alevins, Sci. Total Environ. 830 (2022), pp. 154846. doi:10.1016/j.scitotenv.2022.154846.
  • ECHA, Understanding REACH (registration, evaluation, authorization and restriction of chemicals); 2022. available at https://echa.europa.eu/regulations/reach/understanding-reach.
  • METI, What is CSCL(chemical substances control law); 2022. available at https://www.meti.go.jp/policy/chemical_management/english/cscl/about.html.
  • M.H. Keshavarz, Z. Shirazi, and P. Kiani Sheikhabadi, Risk assessment of organic aromatic compounds to Tetrahymena pyriformis in environmental protection by a simple QSAR model, Process Safety Environ. Protect. 150 (2021), pp. 137–147. doi:10.1016/j.psep.2021.04.011.
  • I. Kahn, S. Sild, and U. Maran, Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks, J. Chem. Inf. Model. 47 (2007), pp. 2271–2279. doi:10.1021/ci700231c.
  • J. Frankel, Cell biology of Tetrahymena thermophila, in Methods in Cell Biology, D.J. Asai and J.D. Forney, eds., Academic Press, San Diego, 1999, pp. 27–125. doi: 10.1016/s0091-679x(08)61528-9.
  • E. Marafante, T. Smyrniotis, and M. Balls, ECVAM: The European centre for the validation of alternative methods, Toxicol. Vitro 8 (1994), pp. 803–805. doi:10.1016/0887-2333(94)90072-8.
  • A. Akkermans, J.M. Chapsal, E.M. Coccia, H. Depraetere, J.F. Dierick, P. Duangkhae, S. Goel, M. Halder, C. Hendriksen, R. Levis, K. Pinyosukhee, D. Pullirsch, G. Sanyal, L. Shi, R. Sitrin, D. Smith, P. Stickings, E. Terao, S. Uhlrich, L. Viviani, and J. Webster, Animal testing for vaccines. Implementing replacement, reduction and refinement: Challenges and priorities, Biologicals 68 (2020), pp. 92–107. doi:10.1016/j.biologicals.2020.07.010.
  • K. Dieguez-Santana, H. Pham-The, P.J. Villegas-Aguilar, H. Le-Thi-Thu, J.A. Castillo-Garit, and G.M. Casanola-Martin, Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database, Chemosphere 165 (2016), pp. 434–441. doi:10.1016/j.chemosphere.2016.09.041.
  • F. Abbasitabar and V. Zare-Shahabadi, In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach, Chemosphere 172 (2017), pp. 249–259. doi:10.1016/j.chemosphere.2016.12.095.
  • K. Roy and G. Ghosh, QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools, Chemosphere 77 (2009), pp. 999–1009. doi:10.1016/j.chemosphere.2009.07.072.
  • K.L. Kaiser, S.P. Niculescu, and T.W. Schultz, Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors, SAR QSAR Environ. Res. 13 (2002), pp. 57–67. doi:10.1080/10629360290002217.
  • X. Yu, Prediction of chemical toxicity to Tetrahymena pyriformis with four-descriptor models, Ecotoxicol Environ. Saf. 190 (2020), pp. 110146. doi:10.1016/j.ecoenv.2019.110146.
  • A.A. Toropov, A.P. Toropova, and E. Benfenati, ‘Ideal correlations’ for the predictive toxicity to Tetrahymena pyriformis, Toxicol. Mech. Meth. 30 (2020), pp. 605–610. doi:10.1080/15376516.2020.1801928.
  • Y. Shi, M. Yu, J. Liu, F. Yan, Z.-H. Luo, and Y.-N. Zhou, Quantitative structure–property relationship model for predicting the propagation rate coefficient in free-radical polymerization, Macromolecules 55 (2022), pp. 9397–9410. doi:10.1021/acs.macromol.2c01449.
  • Q. Jia, X. Cui, L. Li, Q. Wang, Y. Liu, S. Xia, and P. Ma, Quantitative structure-activity relationship for high affinity 5-HT1A receptor ligands based on norm indexes, J. Phys. Chem. B 119 (2015), pp. 15561–15567. doi:10.1021/acs.jpcb.5b08980.
  • W. He, F. Yan, Q. Jia, S. Xia, and Q. Wang, QSAR models for describing the toxicological effects of ILs against Staphylococcus aureus based on norm indexes, Chemosphere 195 (2018), pp. 831–838. doi:10.1016/j.chemosphere.2017.12.091.
  • F. Yan, T. Lan, X. Yan, Q. Jia, and Q. Wang, Norm index-based QSTR model to predict the eco-toxicity of ionic liquids towards Leukemia rat cell line, Chemosphere 234 (2019), pp. 116–122. doi:10.1016/j.chemosphere.2019.06.064.
  • Q. Jia, T. Liu, F. Yan, and Q. Wang, Norm index-based QSAR model for acute toxicity of pesticides toward rainbow trout, Environ. Toxicol. Chem. 39 (2020), pp. 352–358. doi:10.1002/etc.4621.
  • Q. Jia, J. Wang, F. Yan, and Q. Wang, A QSTR model for toxicity prediction of pesticides towards Daphnia magna, Chemosphere 291 (2022), pp. 132980. doi:10.1016/j.chemosphere.2021.132980.
  • A.O. Aptula, D.W. Roberts, M.T. Cronin, and T.W. Schultz, Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis, Chem. Res. Toxicol. 18 (2005), pp. 844–854. doi:10.1021/tx049666n.
  • M.T.D. Cronin, A.O. Aptula, J.C. Duffy, T.I. Netzeva, P.H. Rowe, I.V. Valkova, and T.W. Schultz, Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis, Chemosphere 49 (2002), pp. 1201–1221. doi:10.1016/s0045-6535(02)00508-8.
  • M.T. Cronin, N. Manga, J.R. Seward, G.D. Sinks, and T.W. Schultz, Parametrization of electrophilicity for the prediction of the toxicity of aromatic compounds, Chem. Res. Toxicol. 14 (2001), pp. 1498–1505. doi:10.1021/tx015502k.
  • M.T.D. Cronin and T.W. Schultz, Structure-toxicity relationships for phenols to Tetrahymena pyriformis, Chemosphere 32 (1996), pp. 1453–1468. doi:10.1016/0045-6535(96)00054-9.
  • M.T. Cronin and T.W. Schultz, Development of quantitative structure-activity relationships for the toxicity of aromatic compounds to Tetrahymena pyriformis: Comparative assessment of the methodologies, Chem. Res. Toxicol. 14 (2001), pp. 1284–1295. doi:10.1021/tx0155202.
  • T.I. Netzeva and T.W. Schultz, QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data, Chemosphere 61 (2005), pp. 1632–1643. doi:10.1016/j.chemosphere.2005.04.040.
  • A. Gallegos Saliner and X. Gironés, Topological quantum similarity measures: Applications in QSAR, J. Molec. Struct. THEOCHEM 727 (2005), pp. 97–106. doi:10.1016/j.theochem.2004.11.062.
  • T.W. Schultz, J. Seward-Nagel, K.A. Foster, and V.A. Tucker, Population growth impairment of aliphatic alcohols to Tetrahymena, Environ. Toxicol. 19 (2004), pp. 1–10. doi:10.1002/tox.10145.
  • T.W. Schultz, J.W. Yarbrough, and M. Woldemeskel, Toxicity to Tetrahymena and abiotic thiol reactivity of aromatic isothiocyanates, Cell Biol. Toxicol. 21 (2005), pp. 181–189. doi:10.1007/s10565-005-0169-3.
  • T.W. Schultz, Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis, Chem. Res. Toxicol. 12 (1999), pp. 1262–1267. doi:10.1021/tx9900730.
  • T.W. Schultz, G.D. Sinks, and L.A. Miller, Population growth impairment of sulfur-containing compounds to Tetrahymena pyriformis Environ. Toxicol. 16 (2001), pp. 543–549.
  • T.W. Schultz, T.I. Netzeva, and M.T. Cronin, Selection of data sets for QSARs: Analyses of Tetrahymena toxicity from aromatic compounds, SAR QSAR Environ. Res. 14 (2003), pp. 59–81. doi:10.1080/1062936021000058782.
  • T.I. Netzeva, A.O. Aptula, S.H. Chaudary, J.C. Duffy, T.W. Schultz, G. Schüürmann, and M.T.D. Cronin, Structure-activity relationships for the toxicity of substituted poly-hydroxylated benzenes to Tetrahymena pyriformis: Influence of free radical formation, QSAR Comb. Sci. 22 (2003), pp. 575–582. doi:10.1002/qsar.200330816.
  • Gaussian, expanding the limits of computational chemistry, 2022. available at https://gaussian.com/.
  • Q. Su, W. Lu, D. Du, F. Chen, B. Niu, and K.C. Chou, Prediction of the aquatic toxicity of aromatic compounds to Tetrahymena pyriformis through support vector regression, Oncotarget 8 (2017), pp. 49359–49369. doi:10.18632/oncotarget.17210.
  • J. Jiang, D. Mu, M. Ding, S. Zhang, H. Zhang, and J. Hu, Simultaneous determination of primary and secondary phthalate monoesters in the Taihu Lake: Exploration of sources, Chemosphere 202 (2018), pp. 17–24. doi:10.1016/j.chemosphere.2018.03.070.
  • N.S. Zhang, Y.S. Liu, P.J. Van den Brink, O.R. Price, and G.G. Ying, Ecological risks of home and personal care products in the riverine environment of a rural region in South China without domestic wastewater treatment facilities, Ecotoxicol. Environ. Saf. 122 (2015), pp. 417–425. doi:10.1016/j.ecoenv.2015.09.004.
  • Z.M. Zhang, H.H. Zhang, Y.W. Zou, and G.P. Yang, Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater and sediment of the Bohai Sea and the Yellow Sea, Environ. Pollut. 240 (2018), pp. 235–247. doi:10.1016/j.envpol.2018.04.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.