197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of 2-amino-6-methyl-pyrimidine benzoic acids as ATP competitive casein kinase-2 (CK2) inhibitors using structure- and fragment-based design, docking and molecular dynamic simulation studies

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 211-230 | Received 02 Jan 2023, Accepted 08 Mar 2023, Published online: 13 Apr 2023

References

  • S.E. Roffey and D.W. Litchfield, CK2 regulation: Perspectives in 2021, Biomedicines 9 (2021), p. 1361. doi:10.3390/biomedicines9101361.
  • G. Burnett and E.P. Kennedy, The enzymatic phosphorylation of proteins, J. Biol. Chem. 211 (1954), pp. 969–980. doi:10.1016/S0021-9258(18)71184-8.
  • J.E. Chojnowski, E.A. McMillan, and T.I. Strochlic, Identification of novel CK2 kinase substrates using a versatile biochemical approach, J. Vis. Exp. 144 (2019), p. e59037. doi:10.3791/59037.
  • K. Niefind and R. Battistutta, Structural Bases of Protein Kinase CK2 Function and Inhibition, in Protein Kinase CK2, John Wiley & Sons, Inc, Hoboken, NJ, USA, 2013, pp. 1–75.
  • M.A. Pagano, J. Bain, Z. Kazimierczuk, S. Sarno, M. Ruzzene, G. Di Maira, M. Elliott, A. Orzeszko, G. Cozza, and F. Meggio, The selectivity of inhibitors of protein kinase CK2: An update, Biochem. J. 415 (2008), pp. 353–365. doi:10.1042/BJ20080309.
  • O. Filhol, J. Baudier, C. Delphin, P. Loue-Mackenbach, E.M. Chambaz, and C. Cochet, Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon P53 phosphorylation, J. Biol. Chem. 267 (1992), pp. 20577–20583. doi:10.1016/S0021-9258(19)36725-0.
  • L.R. Cruz, I. Baladrón, A. Rittoles, P.A. Díaz, C. Valenzuela, R. Santana, M.M. Vázquez, A. García, D. Chacón, and D. Thompson, Treatment with an anti-CK2 synthetic peptide improves clinical response in COVID-19 patients with pneumonia. A randomized and controlled clinical trial, ACS Pharmacol. Trans. Sci. 4 (2020), pp. 206–212. doi:10.1021/acsptsci.0c00175.
  • C. Borgo, C. D’Amore, S. Sarno, M. Salvi, and M. Ruzzene, Protein kinase CK2: A potential therapeutic target for diverse human diseases, Signal Transduct. Target. Ther. 6 (2021), pp. 1–20.
  • M. Russo, A. Milito, C. Spagnuolo, V. Carbone, A. Rosén, P. Minasi, F. Lauria, and G.L. Russo, CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia, Oncotarget 8 (2017), p. 42571. doi:10.18632/oncotarget.17246.
  • G. Di Maira, M. Salvi, G. Arrigoni, O. Marin, S. Sarno, F. Brustolon, L.A. Pinna, and M. Ruzzene, Protein kinase CK2 phosphorylates and upregulates Akt/PKB, Cell Death Differ. 12 (2005), pp. 668–677. doi:10.1038/sj.cdd.4401604.
  • R. Romieu-Mourez, E. Landesman-Bollag, D.C. Seldin, A.M. Traish, F. Mercurio, and G.E. Sonenshein, Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-κB in breast cancer, Cancer Res. 61 (2001), pp. 3810–3818.
  • D.H. Song, D.J. Sussman, and D.C. Seldin, Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells, J. Biol. Chem. 275 (2000), pp. 23790–23797. doi:10.1074/jbc.M909107199.
  • A.F. Abdel-Magid, Inhibition of CK2: An attractive therapeutic target for cancer treatment, ACS Med. Chem. Lett. 4 (2013), pp. 1131–1132. doi:10.1021/ml400410p.
  • G. Cozza, L.A. Pinna, and S. Moro, Kinase CK2 inhibition: An update, Curr. Med. Chem. 20 (2013), pp. 671–693. doi:10.2174/092986713804999312.
  • G. Cozza, M. Mazzorana, E. Papinutto, J. Bain, M. Elliott, G. Di Maira, A. Gianoncelli, M.A. Pagano, S. Sarno, and M. Ruzzene, Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2, Biochem. J. 421 (2009), pp. 387–395. doi:10.1042/BJ20090069.
  • Y. Sekiguchi, T. Nakaniwa, T. Kinoshita, I. Nakanishi, K. Kitaura, A. Hirasawa, G. Tsujimoto, and T. Tada, Structural insight into human CK2α in complex with the potent inhibitor ellagic acid, Bioorg. Med. Chem. Lett. 19 (2009), pp. 2920–2923. doi:10.1016/j.bmcl.2009.04.076.
  • S. Oramas-Royo, S. Haidar, A. Amesty, P. Martin-Acosta, G. Feresin, A. Tapia, D. Aichele, J. Jose, and A. Estevez-Braun, Design, synthesis and biological evaluation of new embelin derivatives as CK2 inhibitors, Bioorg. Chem. 95 (2020), p. 103520. doi:10.1016/j.bioorg.2019.103520.
  • K. Chojnacki, D. Lindenblatt, P. Wińska, M. Wielechowska, C. Toelzer, K. Niefind, and M. Bretner, Synthesis, biological properties and structural study of new halogenated azolo [4, 5-b] pyridines as inhibitors of CK2 kinase, Bioorg. Chem. 106 (2021), p. 104502. doi:10.1016/j.bioorg.2020.104502.
  • A.G. Golub, O.Y. Yakovenko, A.O. Prykhod’Ko, S.S. Lukashov, V.G. Bdzhola, and S.M. Yarmoluk, Evaluation of 4, 5, 6, 7-tetrahalogeno-1H-isoindole-1, 3 (2H)-diones as inhibitors of human protein kinase CK2, Biochim. Biophys. Acta Proteins Proteom. 1784 (2008), pp. 143–149. doi:10.1016/j.bbapap.2007.10.009.
  • S. Sarno, E. de Moliner, M. Ruzzene, M.A. Pagano, R. Battistutta, J. Bain, D. Fabbro, J. Schoepfer, M. Elliott, and P. Furet, Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5, 6-dihydroindolo-(1, 2-a) quinazolin-7-yl] acetic acid (IQA), Biochem. J. 374 (2003), pp. 639–646. doi:10.1042/bj20030674.
  • E. Vangrevelinghe, K. Zimmermann, J. Schoepfer, R. Portmann, D. Fabbro, and P. Furet, Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking, J. Med. Chem. 46 (2003), pp. 2656–2662. doi:10.1021/jm030827e.
  • M.A. Pagano, F. Meggio, M. Ruzzene, M. Andrzejewska, Z. Kazimierczuk, and L.A. Pinna, 2-Dimethylamino-4, 5, 6, 7-tetrabromo-1H-benzimidazole: A novel powerful and selective inhibitor of protein kinase CK2, Biochem. Biophys. Res. Commun. 321 (2004), pp. 1040–1044. doi:10.1016/j.bbrc.2004.07.067.
  • K.K.K. Leung and B.H. Shilton, Quinone reductase 2 is an adventitious target of protein kinase CK2 inhibitors TBBz (TBI) and DMAT, Biochemistry 54 (2015), pp. 47–59. doi:10.1021/bi500959t.
  • M.A. Pagano, G. Poletto, G. Di Maira, G. Cozza, M. Ruzzene, S. Sarno, J. Bain, M. Elliott, S. Moro, and G. Zagotto, Tetrabromocinnamic acid (TBCA) and related compounds represent a new class of specific protein kinase CK2 inhibitors, Chembiochem 8 (2007), pp. 129–139. doi:10.1002/cbic.200600293.
  • F. Pierre, P.C. Chua, S.E. O’Brien, A. Siddiqui-Jain, P. Bourbon, M. Haddach, J. Michaux, J. Nagasawa, M.K. Schwaebe, and E. Stefan, Discovery and SAR of 5-(3-chlorophenylamino) benzo [c][2, 6] naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer, J. Med. Chem. 54 (2011), pp. 635–654. doi:10.1021/jm101251q.
  • R. Battistutta, G. Cozza, F. Pierre, E. Papinutto, G. Lolli, S. Sarno, S.E. O’Brien, A. Siddiqui-Jain, M. Haddach, and K. Anderes, Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer, Biochemistry 50 (2011), pp. 8478–8488. doi:10.1021/bi2008382.
  • C. Lu, C. Wu, D. Ghoreishi, W. Chen, L. Wang, W. Damm, G.A. Ross, M.K. Dahlgren, E. Russell, and C.D. Von Bargen, OPLS4: Improving force field accuracy on challenging regimes of chemical space, J. Chem. Theory Comput. 17 (2021), pp. 4291–4300. doi:10.1021/acs.jctc.1c00302.
  • G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (2013), pp. 221–234. doi:10.1007/s10822-013-9644-8.
  • H. Sirous, G. Campiani, V. Calderone, and S. Brogi, Discovery of novel hit compounds as potential HDAC1 inhibitors: The case of ligand-and structure-based virtual screening, Comput. Biol. Med. 137 (2021), p. 104808. doi:10.1016/j.compbiomed.2021.104808.
  • S.L. Dixon, A.M. Smondyrev, and S.N. Rao, PHASE: A novel approach to pharmacophore modeling and 3D database searching, Chem. Biol. Drug Des. 67 (2006), pp. 370–372. doi:10.1111/j.1747-0285.2006.00384.x.
  • K.B. Suma, A. Kumari, D. Shetty, E. Fernandes, D.V. Chethan, J. Jays, and M. Murahari, Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis, J. Mol. Graph. Model. 101 (2020), p. 107718. doi:10.1016/j.jmgm.2020.107718.
  • T. Sterling and J.J. Irwin, ZINC 15–ligand discovery for everyone, J. Chem. Inf. Model. 55 (2015), pp. 2324–2337. doi:10.1021/acs.jcim.5b00559.
  • R. Sharma, S.C. Schürer, and S.M. Muskal, High quality, small molecule-activity datasets for kinase research, F1000Research 5 (2016), p. 1366. doi:10.12688/f1000research.8950.1.
  • E.F. Marondedze, K.K. Govender, and P.P. Govender, Ligand-based pharmacophore modelling and virtual screening for the identification of amyloid-beta diagnostic molecules, J. Mol. Graph. Model. 101 (2020), p. 107711. doi:10.1016/j.jmgm.2020.107711.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, and J.K. Perry, Glide:  A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem. 47 (2004), pp. 1739–1749. doi:10.1021/jm0306430.
  • S. Alnabulsi, E.A. Al-Hurani, and T. El-Elimat, Amino-carboxamide benzothiazoles as potential LSD1 hit inhibitors. Part I: Computational fragment-based drug design, J. Mol. Graph. Model. 93 (2019), p. 107440. doi:10.1016/j.jmgm.2019.107440.
  • H. Zhong, L.M. Tran, and J.L. Stang, Induced-fit docking studies of the active and inactive states of protein tyrosine kinases, J. Mol. Graph. Model. 28 (2009), pp. 336–346. doi:10.1016/j.jmgm.2009.08.012.
  • S.B. Mirza, R.E. Salmas, M.Q. Fatmi, and S. Durdagi, Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study, J. Mol. Graph. Model. 66 (2016), pp. 99–107. doi:10.1016/j.jmgm.2016.03.008.
  • T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092. doi:10.1063/1.464397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.