78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

QSAR classification model for diverse series of antifungal agents based on binary coyote optimization algorithm

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 285-298 | Received 12 Mar 2023, Accepted 24 Apr 2023, Published online: 09 May 2023

References

  • M. Arisoy, O. Temiz-Arpaci, I. Yildiz, F. Kaynak-Onurdag, E. Aki, I. Yalcin, and U. Abbasoglu, Synthesis, antimicrobial activity and QSAR studies of 2,5-disubstituted benzoxazoles, SAR QSAR Environ. Res. 19 (2008), pp. 589–612. doi:10.1080/10629360802348738.
  • V.S. Georgiev, Membrane transporters and antifungal drug resistance, Curr. Drug Targets 1 (2000), pp. 261–284. doi:10.2174/1389450003349209.
  • J.-J. Xing, Y.-F. Liu, Y.-Q. Li, H. Gong, and Y.-P. Zhou, QSAR classification model for diverse series of antimicrobial agents using classification tree configured by modified particle swarm optimization, Chemom. Intell. Lab. Syst. 137 (2014), pp. 82–90. doi:10.1016/j.chemolab.2014.06.011.
  • R.K. Singla and V.G. Bhat, QSAR model for predicting the fungicidal action of 1,2,4-triazole derivatives against Candida albicans, J. Enzym. Inhib. Med. Chem. 25 (2010), pp. 696–701. doi:10.3109/14756360903524296.
  • R. Medina Marrero, Y. Marrero-Ponce, S.J. Barigye, Y. Echeverría Díaz, R. Acevedo-Barrios, G.M. Casañola-Martín, M. García Bernal, F. Torrens, and F. Pérez-Giménez, QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents, SAR QSAR Environ. Res. 26 (2015), pp. 943–958. doi:10.1080/1062936X.2015.1104517.
  • R. Di Santo, A. Tafi, R. Costi, M. Botta, M. Artico, F. Corelli, M. Forte, F. Caporuscio, L. Angiolella, and A.T. Palamara, Antifungal agents. 11. N -substituted derivatives of 1-[(Aryl)(4-aryl-1 H -pyrrol-3-yl)methyl]-1 H -imidazole:  Synthesis, anti- Candida activity, and QSAR studies, J. Med. Chem. 48 (2005), pp. 5140–5153. doi:10.1021/jm048997u.
  • N.H. Georgopapadakou, Antifungals: Mechanism of action and resistance, established and novel drugs, Curr. Opin. Microbiol. 1 (1998), pp. 547–557. doi:10.1016/S1369-5274(98)80087-8.
  • K. Takrouri, G. Oren, I. Polacheck, E. Sionov, E. Shalom, J. Katzhendler, and M. Srebnik, Synthesis and antifungal activity of a novel series of alkyldimethylamine cyanoboranes and their derivatives, J. Med. Chem. 49 (2006), pp. 4879–4885. doi:10.1021/jm060476e.
  • T.J. Walsh, C. Gonzalez, E. Roilides, B.U. Mueller, N. Ali, L.L. Lewis, T.O. Whitcomb, D.J. Marshall, and P.A. Pizzo, Fungemia in children infected with the human immunodeficiency virus: New epidemiologic patterns, emerging pathogens, and improved outcome with antifungal therapy, Clin. Infect. Dis. 20 (1995), pp. 900–906. doi:10.1093/clinids/20.4.900.
  • P.R. Duchowicz, M.G. Vitale, E.A. Castro, M. Fernández, and J. Caballero, QSAR analysis for heterocyclic antifungals, Bioorg. Med. Chem. 15 (2007), pp. 2680–2689. doi:10.1016/j.bmc.2007.01.039.
  • N.-H. Nam, S. Sardari, M. Selecky, and K. Parang, Carboxylic acid and phosphate ester derivatives of fluconazole: Synthesis and antifungal activities, Bioorg. Med. Chem. 12 (2004), pp. 6255–6269. doi:10.1016/j.bmc.2004.08.049.
  • V.M. Gokhale and V.M. Kulkarni, Understanding the antifungal activity of terbinafine analogues using quantitative structure–activity relationship (qsar) models, Bioorg. Med. Chem. 8 (2000), pp. 2487–2499. doi:10.1016/S0968-0896(00)00178-4.
  • B. Narasimhan, V. Judge, R. Narang, R. Ohlan, and S. Ohlan, Quantitative structure–activity relationship studies for prediction of antimicrobial activity of synthesized 2,4-hexadienoic acid derivatives, Bioorg. Med. Chem. Lett. 17 (2007), pp. 5836–5845. doi:10.1016/j.bmcl.2007.08.037.
  • Z.Y. Algamal, M.H. Lee, and A.M. Al-Fakih, High-dimensional quantitative structure–activity relationship modeling of influenza neuraminidase a/PR/8/34 (H1N1) inhibitors based on a two-stage adaptive penalized rank regression, J. Chemom. 30 (2016), pp. 50–57. doi:10.1002/cem.2766.
  • Z.Y. Algamal, M.H. Lee, A.M. Al-Fakih, and M. Aziz, High-dimensional QSAR modelling using penalized linear regression model with L 1/2 -norm, SAR QSAR Environ. Res. 27 (2016), pp. 703–719. doi:10.1080/1062936X.2016.1228696.
  • M.D. Altıntop, Z.A. Kaplancıklı, G.A. Çiftçi, and R. Demirel, Synthesis and biological evaluation of thiazoline derivatives as new antimicrobial and anticancer agents, Eur. J. Med. Chem. 74 (2014), pp. 264–277. doi:10.1016/j.ejmech.2013.12.060.
  • B. Narasimhan, D. Belsare, D. Pharande, V. Mourya, and A. Dhake, Esters, amides and substituted derivatives of cinnamic acid: Synthesis, antimicrobial activity and QSAR investigations, Eur. J. Med. Chem. 39 (2004), pp. 827–834. doi:10.1016/j.ejmech.2004.06.013.
  • D. Sharma, B. Narasimhan, P. Kumar, and A. Jalbout, Synthesis and QSAR evaluation of 2-(substituted phenyl)-1H-benzimidazoles and [2-(substituted phenyl)-benzimidazol-1-yl]-pyridin-3-yl-methanones, Eur. J. Med. Chem. 44 (2009), pp. 1119–1127. doi:10.1016/j.ejmech.2008.06.009.
  • A.R. Katritzky, S.H. Slavov, D.A. Dobchev, and M. Karelson, QSAR modeling of the antifungal activity against Candida albicans for a diverse set of organic compounds, Bioorg. Med. Chem. 16 (2008), pp. 7055–7069. doi:10.1016/j.bmc.2008.05.014.
  • S.-M. Tan, J. Jiao, X.-L. Zhu, Y.-P. Zhou, D.-D. Song, H. Gong, and R.-Q. Yu, QSAR studies of a diverse series of antimicrobial agents against Candida albicans by classification and regression trees, Chemom. Intell. Lab. Syst. 103 (2010), pp. 184–190. doi:10.1016/j.chemolab.2010.07.005.
  • N.C. Desai, G.M. Kotadiya, A.R. Trivedi, V.M. Khedkar, and P.C. Jha, Synthesis, biological valuation, and QSAR studies of novel pyrazole bearing pyridyl oxadiazole analogues as potential antimicrobial agents, Med. Chem. Res. 25 (2016), pp. 712–727. doi:10.1007/s00044-016-1511-4.
  • M.M. Conner, M.R. Ebinger, and F.F. Knowlton, Evaluating coyote management strategies using a spatially explicit, individual-based, socially structured population model, Ecol. Model. 219 (2008), pp. 234–247. doi:10.1016/j.ecolmodel.2008.09.008.
  • W.C. Pitt, P.W. Box, and F.F. Knowlton, An individual-based model of canid populations: Modelling territoriality and social structure, Ecol. Model. 166 (2003), pp. 109–121. doi:10.1016/S0304-3800(03)00130-3.
  • J. Pierezan and L.D.S. Coelho, Coyote optimization algorithm: A new metaheuristic for global optimization problems, 2018 IEEE Congress on Evolutionary Computation (CEC), IEEE, Rio de Janeiro, Brazil, 2018, pp. 1–8.
  • A.A.Z. Diab, H.M. Sultan, T.D. Do, O.M. Kamel, and M.A. Mossa, Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules, IEEE Access 8 (2020), pp. 111102–111140. doi:10.1109/ACCESS.2020.3000770.
  • R.C. Thom de Souza, C.A. de Macedo, L. Dos Santos Coelho, J. Pierezan, and V.C. Mariani, Binary coyote optimization algorithm for feature selection, Pattern Recognit. 107 (2020), pp. 107470. doi:10.1016/j.patcog.2020.107470.
  • S. Mirjalili and A. Lewis, S-shaped versus V-shaped transfer functions for binary particle swarm optimization, Swarm Evol. Comput. 9 (2013), pp. 1–14. doi:10.1016/j.swevo.2012.09.002.
  • M.J. Islam, X. Li, and Y. Mei, A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO, Appl. Soft. Comput. 59 (2017), pp. 182–196. doi:10.1016/j.asoc.2017.04.050.
  • Y. He, F. Zhang, S. Mirjalili, and T. Zhang, Novel binary differential evolution algorithm based on Taper-shaped transfer functions for binary optimization problems, Swarm Evol. Comput. 69 (2022), pp. 101022. doi:10.1016/j.swevo.2021.101022.
  • -S.-S. Guo, J.-S. Wang, and M.-W. Guo, Z-shaped transfer functions for binary particle swarm optimization algorithm, Comput. Intell. Neurosci. 2020 (2020), pp. 6502807. doi:10.1155/2020/6502807.
  • M.K. Qasim, Z.Y. Algamal, and H.T.M. Ali, A binary QSAR model for classifying neuraminidase inhibitors of influenza A viruses (H1N1) using the combined minimum redundancy maximum relevancy criterion with the sparse support vector machine, SAR QSAR Environ. Res. 29 (2018), pp. 517–527. doi:10.1080/1062936X.2018.1491414.
  • G.M. Weiss and F. Provost, Learning when training data are costly: The effect of class distribution on tree induction, J. Artif. Intell. Res. 19 (2003), pp. 315–354. doi:10.1613/jair.1199.
  • A.A. Ewees, L. Abualigah, D. Yousri, Z.Y. Algamal, M.A.A. Al-qaness, R.A. Ibrahim, and M. Abd Elaziz, Improved Slime mould algorithm based on firefly algorithm for feature selection: A case study on QSAR model, Eng. Comput. 38 (2022), pp. 2407–2421. doi:10.1007/s00366-021-01342-6.
  • M. Ghorbanzadeh, J. Zhang, and P.L. Andersson, Binary classification model to predict developmental toxicity of industrial chemicals in zebrafish, J. Chemometr. 30 (2016), pp. 298–307. doi:10.1002/cem.2791.
  • K. Roy, S. Kar, and R.N. Das, Statistical Methods in QSAR/QSPR, in A Primer on QSAR/QSPR Modeling: Fundamental Concepts, K. Roy, S. Kar, and R.N. Das, eds., Springer International Publishing, Cham, 2015, pp. 37–59.
  • A. Pérez-Garrido, A.M. Helguera, F. Borges, M.N.D.S. Cordeiro, V. Rivero, and A.G. Escudero, Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models, J. Chem. Inf. Model. 51 (2011), pp. 2746–2759. doi:10.1021/ci2003076.
  • A.M. Al-Fakih, Z.Y. Algamal, M.H. Lee, M. Aziz, and H.T.M. Ali, QSAR classification model for diverse series of antifungal agents based on improved binary differential search algorithm, SAR QSAR Environ. Res. 30 (2019), pp. 131–143. doi:10.1080/1062936X.2019.1568298.
  • A.M. Alharthi, M.H. Lee, Z.Y. Algamal, and A.M. Al-Fakih, Quantitative structure-activity relationship model for classifying the diverse series of antifungal agents using ratio weighted penalized logistic regression, SAR QSAR Environ. Res. 31 (2020), pp. 571–583. doi:10.1080/1062936X.2020.1782467.
  • W.H. Kruskal and W.A. Wallis, Use of Ranks in One-Criterion Variance Analysis, J. Am. Stat. Assoc. 47 (1952), pp. 583–621. doi:10.1080/01621459.1952.10483441.
  • Z.Y. Algamal and M.H. Lee, A new adaptive L1-norm for optimal descriptor selection of high-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives, SAR QSAR Environ. Res. 28 (2017), pp. 75–90. doi:10.1080/1062936X.2017.1278618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.