70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, antiproliferative and 4D-QSAR studies of thiadiazole derivatives bearing acrylamide moiety as EGFR inhibitors

, , &
Pages 341-359 | Received 17 Mar 2023, Accepted 08 May 2023, Published online: 23 May 2023

References

  • J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, and F. Bray, Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer. 136 (2015), pp. E359–E386. doi:10.1002/ijc.29210.
  • A. Ayati, S. Moghimi, S. Salarinejad, M. Safavi, B. Pouramiri, and A. Foroumadi, A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy, Bioorg. Chem. 99 (2020), pp. 103811. doi:10.1016/j.bioorg.2020.103811.
  • C. Yewale, D. Baradia, I. Vhora, S. Patil, and A. Misra, Epidermal growth factor receptor targeting in cancer: A review of trends and strategies, Biomaterials 34 (2013), pp. 8690–8707. doi:10.1016/j.biomaterials.2013.07.100.
  • M. Toolabi, S. Moghimi, T.O. Bakhshaiesh, S. Salarinejad, A. Aghcheli, Z. Hasanvand, E. Nazeri, A. Khalaj, R. Esmaeili, and A. Foroumadi, 6-Cinnamoyl-4-arylaminothienopyrimidines as highly potent cytotoxic agents: Design, synthesis and structure-activity relationship studies, Eur. J. Med. Chem. 185 (2020), pp. 111786. doi:10.1016/j.ejmech.2019.111786.
  • M. Fukuoka, S. Yano, G. Giaccone, T. Tamura, K. Nakagawa, J.Y. Douillard, Y. Nishiwaki, J. Vansteenkiste, S. Kudoh, D. Rischin, R. Eek, T. Horai, K. Noda, I. Takata, E. Smit, S. Averbuch, A. Macleod, A. Feyereislova, R.P. Dong, and J. Baselga, Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer, J. Clin. Oncol. 21 (2003), pp. 2237–2246. doi:10.1200/jco.2003.10.038.
  • G.X. Xia, W.T. Chen, J. Zhang, J.A. Shao, Y. Zhang, W. Huang, L.D. Zhang, W.X. Qi, X. Sun, B.J. Li, Z.X. Xiang, C. Ma, J. Xu, H.L. Deng, Y.F. Li, P. Li, H. Miao, J.S. Han, Y.J. Liu, J.K. Shen, and Y.P. Yu, A chemical tuned strategy to develop novel Irreversible EGFR-TK inhibitors with improved safety and pharmacokinetic profiles, J. Med. Chem. 57 (2014), pp. 9889–9900. doi:10.1021/jm5014659.
  • V.A. Pollack, D.M. Savage, D.A. Baker, K.E. Tsaparikos, D.E. Sloan, J.D. Moyer, E.G. Barbacci, L.R. Pustilnik, T.A. Smolarek, J.A. Davis, M.P. Vaidya, L.D. Arnold, J.L. Doty, K.K. Iwata, and M.J. Morin, Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: Dynamics of receptor inhibition in situ and antitumor effects in athymic mice, J. Pharmacol. Exp. Ther. 291 (1999), pp. 739–748.
  • A.J. Gonzales, K.E. Hook, I.W. Althaus, P.A. Ellis, E. Trachet, A.M. Delaney, P.J. Harvey, T.A. Ellis, D.M. Amato, J.M. Nelson, D.W. Fry, T. Zhu, C.M. Loi, S.A. Fakhoury, K.M. Schlosser, K.E. Sexton, R.T. Winters, J.E. Reed, A.J. Bridges, D.J. Lettiere, D.A. Baker, J.X. Yang, H.T. Lee, H. Tecle, and P.W. Vincent, Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor, Mol. Cancer Ther. 7 (2008), pp. 1880–1889. doi:10.1158/1535-7163.Mct-07-2232.
  • A.M.M. Mohamed, M.F. Ismail, H.M.F. Madkour, A.F. Aly, and M.S. Salem, Straightforward synthesis of 2-chloro-N-(5-(cyanomethyl)-1,3,4-thiadiazol-2-yl)benzamide as a precursor for synthesis of novel heterocyclic compounds with insecticidal activity, Synth. Commun. 50 (2020), pp. 3424–3442. doi:10.1080/00397911.2020.1802652.
  • L. Yan, K. Hu, X.F. Liu, Y.L. Li, X.H. Liu, and Z.Q. Jiang, Diiron ethane-1,2-dithiolate complexes with 1,2,3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity, Appl. Organomet. Chem. 35 (2021), pp. e6084. doi:10.1002/aoc.6084.
  • M. Toolabi, M. Khoramjouy, A. Aghcheli, A. Ayati, S. Moghimi, L. Firoozpour, S. Shahhosseini, R. Shojaei, A. Asadipour, K. Divsalar, M. Faizi, and A. Foroumadi, Synthesis and radioligand-binding assay of 2,5-disubstituted thiadiazoles and evaluation of their anticonvulsant activities, Arch. Pharm. 353 (2020), pp. e2000066. doi:10.1002/ardp.202000066.
  • S. Vudhgiri, D. Koude, D.K. Veeragoni, S. Misra, R.B.N. Prasad, and R.C.R. Jala, Synthesis and biological evaluation of 5-fatty-acylamido-1, 3, 4-thiadiazole-2-thioglycosides, Biorg. Med. Chem. Lett. 27 (2017), pp. 3370–3373. doi:10.1016/j.bmcl.2017.06.004.
  • B. Hemmateenejad, R. Miri, M. Jafarpour, M. Tabarzad, and A. Foroumadi, Multiple linear regression and principal component analysis-based prediction of the anti-tuberculosis activity of some 2-aryl-1,3,4-thiadiazole derivatives, QSAR Comb. Sci. 25 (2006), pp. 56–66. doi:10.1002/qsar.200530006.
  • A.A. Othman, M. Kihel, and S. Amara, 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents, Arab. J. Chem. 12 (2019), pp. 1660–1675. doi:10.1016/j.arabjc.2014.09.003.
  • G. Serban, Synthetic compounds with 2-amino-1,3,4-thiadiazole moiety against viral infections, Molecules 25 (2020), pp. 942. doi:10.3390/molecules25040942.
  • D. Chowrasia, C. Karthikeyan, L. Choure, S.M. Gupta, M. Arshad, and P. Trivedi, Synthesis, characterization and anti cancer activity of some fluorinated 3,6-diaryl- 1,2,4 triazolo 3,4-b 1,3,4 thiadiazoles, Arab. J. Chem. 10 (2017), pp. S2424–S2428. doi:10.1016/j.arabjc.2013.08.026.
  • G. Serban, O. Stanasel, E. Serban, and S. Bota, 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents, Drug Des. Devel. Ther. l2 (2018), pp. 1545–1566. doi:10.2147/dddt.S155958.
  • K. Nepali, S. Sharma, M. Sharma, P.M.S. Bedi, and K.L. Dhar, Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids, Eur. J. Med. Chem. 77 (2014), pp. 422–487. doi:10.1016/j.ejmech.2014.03.018.
  • Y.A. Ammar, A.A. Farag, A.M. Ali, S.A. Hessein, A.A. Askar, E.A. Fayed, D.M. Elsisi, and A. Ragab, Antimicrobial evaluation of thiadiazino and thiazolo quinoxaline hybrids as potential DNA gyrase inhibitors; design, synthesis, characterization and morphological studies, Bioorg. Chem. 99 (2020), pp. 103841. doi:10.1016/j.bioorg.2020.103841.
  • M.M.S. Wassel, Y.A. Ammar, G. Ali, A. Belal, A.B.M. Mehany, and A. Ragab, Development of adamantane scaffold containing 1,3,4-thiadiazole derivatives: Design, synthesis, anti-proliferative activity and molecular docking study targeting EGFR, Bioorg. Chem. 110 (2021), pp. 104794. doi:10.1016/j.bioorg.2021.104794.
  • Z. Zhao, Q. Liu, S. Bliven, L. Xie, and P.E. Bourne, Determining cysteines available for covalent inhibition across the human kinome, J. Med. Chem. 60 (2017), pp. 2879–2889. doi:10.1021/acs.jmedchem.6b01815.
  • R. Concu and M.N.D.S. Cordeiro, Looking for new inhibitors for the epidermal growth factor receptor, Curr. Top. Med. Chem. 18 (2018), pp. 219–232. doi:10.2174/1568026618666180329123023.
  • M. Gao, Q.L. Lv, H.P. Zhang, and G.G. Tu, Synthesis and 4D-QSAR studies of alanine hydroxamic acid derivatives as aminopeptidase N inhibitors, Med. Chem. 17 (2021), pp. 658–666. doi:10.2174/1573406416666191227115451.
  • T. Hassinen and M. Perakyla, New energy terms for reduced protein models implemented in an off-lattice force field, J. Comput. Chem. 22 (2001), pp. 1229–1242. doi:10.1002/jcc.1080.
  • R. Patil and S. Sawant, Molecular dynamics guided receptor independent 4D QSAR studies of substituted coumarins as anticancer agents, Curr. Comput. Aided Drug Des. ll (2015), pp. 39–50. doi:10.2174/1573409911666150617113933.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, J. Comput. Chem. 34 (2013), pp. 2121–2132. doi:10.1002/jcc.23361.
  • J.W. Chen, Q. Lv, and G.G. Tu, Synthesis and molecular simulation studies of mandelic acid peptidomimetic derivatives as aminopeptidase N inhibitors, Curr. Comput. Aided Drug Des. 17 (2021), pp. 619–626. doi:10.2174/1573409916666200703161039.
  • M. Murariu, L. Stroea, and V. Melinte, Synthesis and self-assembly of optically active random copolymers bearing L-alanine and L-glutamic acid moieties in aqueous medium, React. Funct. Polym. 157 (2020), pp. 104778. doi:10.1016/j.reactfunctpolym.2020.104778.
  • T.Y. Li, C. Shen, Y.L. Sun, J. Zhang, P.J. Xiang, X.N. Lu, and G.F. Zhong, Cobalt-catalyzed olefinic C-H alkenylation/alkylation switched by carbonyl groups, Org. Lett. 21 (2019), pp. 7772–7777. doi:10.1021/acs.orglett.9b02717.
  • A. Kulshreshtha and P. Piplani, Ameliorative effects of amide derivatives of 1,3,4-thiadiazoles on scopolamine induced cognitive dysfunction, Eur. J. Med. Chem. 122 (2016), pp. 557–573. doi:10.1016/j.ejmech.2016.06.046.
  • S.H. Li, G. Li, H.M. Huang, F. Xiong, X. Mai, B.H. Kuang, C.M. Liu, and G.G. Tu, Synthesis of 1,3,4-thiadiazole derivatives as aminopeptidase N inhibitors, Pharmazie 64 (2009), pp. 67–70. doi:10.1691/ph.2009.8630.
  • S. Suman, R. Priya, and M. Kameswaran, Induction of different cellular arrest and molecular responses in low EGFR expressing A549 and high EGFR expressing A431 tumor cells treated with various doses of Lu-177-Nimotuzumab, Int. J. Radiat. Biol. 96 (2020), pp. 1144–1156. doi:10.1080/09553002.2020.1793012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.