117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

HDAC6 detector: online application for evaluating compounds as potential histone deacetylase 6 inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 619-637 | Received 11 Jun 2023, Accepted 31 Jul 2023, Published online: 11 Aug 2023

References

  • T.C.S. Ho, A.H.Y. Chan, and A. Ganesan, Thirty years of HDAC inhibitors: 2020 insight and hindsight, J. Med. Chem. 63 (2020), pp. 12460–12484. doi:10.1021/acs.jmedchem.0c00830.
  • X.X. Wang, R.Z. Wan, and Z.P. Liu, Recent advances in the discovery of potent and selective HDAC6 inhibitors, Eur. J. Med. Chem. 143 (2018), pp. 1406–1418. doi:10.1016/j.ejmech.2017.10.040.
  • Z. Rana, S. Diermeier, M. Hanif, and R.J. Rosengren, Understanding failure and improving treatment using HDAC inhibitors for prostate cancer, Biomedicines 8 (2020), pp. 22.
  • T. Li, C. Zhang, S. Hassan, X. Liu, F. Song, K. Chen, W. Zhang, and J. Yang, Histone deacetylase 6 in cancer, J. Hematol. Oncol. 11 (2018), pp. 111.
  • G.I. Aldana-Masangkay and K.M. Sakamoto, The role of HDAC6 in cancer, J. Biomed. Biotechnol. 2011 (2011), pp. 875824. doi:10.1155/2011/875824.
  • B.T. Scroggins, K. Robzyk, D. Wang, M.G. Marcu, S. Tsutsumi, K. Beebe, R.J. Cotter, S. Felts, D. Toft, L. Karnitz, N. Rosen, and L. Neckers, An acetylation site in the middle domain of Hsp90 regulates chaperone function, Mol. Cell. 25 (2007), pp. 151–159. doi:10.1016/j.molcel.2006.12.008.
  • J. Trepel, M. Mollapour, G. Giaccone, and L. Neckers, Targeting the dynamic HSP90 complex in cancer, Nat. Rev. Cancer 10 (2010), pp. 537–549.
  • L. Whitesell and S.L. Lindquist, HSP90 and the chaperoning of cancer, Nat. Rev. Cancer 5 (2005), pp. 761–772.
  • B. Zhou, D. Liu, and Y. Tan, Role of HDAC6 and its selective inhibitors in gastrointestinal cancer, Front. Cell Dev. Biol. 9 (2021), pp. 719390. doi:10.3389/fcell.2021.719390.
  • T. Onishi, R. Maeda, M. Terada, S. Sato, T. Fujii, M. Ito, K. Hashikami, T. Kawamoto, and M. Tanaka, A novel orally active HDAC6 inhibitor T-518 shows a therapeutic potential for Alzheimer’s disease and tauopathy in mice, Sci. Rep. 29 (2021), pp. 15423. doi:10.1038/s41598-021-94923-w.
  • D. Bae, J.Y. Lee, N. Ha, J. Park, J. Baek, D. Suh, H.S. Lim, S.M. Ko, T. Kim, D. Som Jeong, and W.C. Son, CKD-506: A novel HDAC6-selective inhibitor that exerts therapeutic effects in a rodent model of multiple sclerosis, Sci. Rep. 11 (2021), pp. 14466. doi:10.1038/s41598-021-93232-6.
  • S.V. Demyanenko, V.A. Dzreyan, and A.B. Uzdensky, Overexpression of HDAC6, but not HDAC3 and HDAC4 in the penumbra after photothrombotic stroke in the rat cerebral cortex and the neuroprotective effects of α-phenyl tropolone, HPOB, and sodium valproate, Brain Res. Bull. 162 (2020), pp. 151–165. doi:10.1016/j.brainresbull.2020.06.010.
  • M.V. Kozlov, A.A. Kleymenova, L.I. Romanova, K.A. Konduktorov, K.A. Kamarova, O.A. Smirnova, V.S. Prassolov, and S.N. Kochetkov, Pyridine hydroxamic acids are specific anti-HCV agents affecting HDAC6, Bioorg. Med. Chem. Lett. 25 (2015), pp. 2382–2385. doi:10.1016/j.bmcl.2015.04.016.
  • I. Çakır, C.K. Hadley, P.L. Pan, R.A. Bagchi, M. Ghamari-Langroudi, D.T. Porter, Q. Wang, M.J. Litt, S. Jana, S. Hagen, P. Lee, A. White, J.D. Lin, T.A. McKinsey, and R.D. Cone, Histone deacetylase 6 inhibition restores leptin sensitivity and reduces obesity, Nat. Metab. 4 (2022), pp. 44–59.
  • J. Li, M. Yu, S. Fu, D. Liu, and Y. Tan, Role of selective histone deacetylase 6 inhibitor ACY-1215 in cancer and other human diseases, Front. Pharmacol. 13 (2022), pp. 1117936. doi:10.3389/fphar.2022.1117936.
  • V.N. Osipov, D.S. Khachatryan, and A.N. Balaev, Biologically active quinazoline-based hydroxamic acids, Med. Chem. Res. 29 (2020), pp. 831–845. doi:10.1007/s00044-020-02530-7.
  • E.N. Muratov, J. Bajorath, R.P. Sheridan, I.V. Tetko, D. Filimonov, V. Poroikov, T.I. Oprea, I.I. Baskin, A. Varnek, A. Roitberg, O. Isayev, S. Curtalolo, D. Fourches, Y. Cohen, A. Aspuru-Guzik, D.A. Winkler, D. Agrafiotis, A. Cherkasov, and A. Tropsha, QSAR without borders, Chem. Soc. Rev 49 (2020), pp. 3525–3716.
  • O.V. Tinkov, V.Y. Grigorev, L.D. Grigoreva, V.N. Osipov, A.V. Kolotaev, and D.S. Khachatryan, QSAR analysis and experimental evaluation of new quinazoline-containing hydroxamic acids as histone deacetylase 6 inhibitors, SAR QSAR Environ. Res. 33 (2022), pp. 513–532. doi:10.1080/1062936X.2022.2092210.
  • O.V. Tinkov, V.Y. Grigorev, and L.D. Grigoreva, QSAR Analysis of HDAC6 Inhibitors, Moscow Univ. Chem. Bull. 77 (2022), pp. S25–S35. doi:10.3103/S0027131422070100.
  • D. Ruzic, N. Djokovic, and K. Nikolic, Fragment-based drug design of selective HDAC6 inhibitors, Meth. Mol. Biol. 2266 (2021), pp. 155–170.
  • D. Ruzic, M. Petkovic, D. Agbaba, A. Ganesan, and K. Nikolic, Combined ligand and fragment-based drug design of selective histone deacetylase - 6 inhibitors, Mol. Inform. 38 (2019), pp. e1800083. doi:10.1002/minf.201800083.
  • C. Hu, L. Hong, and W. Du, 3D-QSAR studies of HDAC6 Inhibitors using docking-based alignment, Lett. Drug Des. Discov. 14 (2017), pp. 798–810. doi:10.2174/1570180813666161028165151.
  • S. Vijayasarathy and J. Chatterjee, Comparative QSAR analysis of histone deacetylase 6 (hdac6) inhibitors as anti-cancer agents, Int. J. Curr. Res. 8 (2016), pp. 39618–39623.
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001), pp. 3–26. doi:10.1016/S0169-409X(00)00129-0.
  • D. Mendez, A. Gaulton, A.P. Bento, J. Chambers, M. De Veij, E. Félix, M.P. Magariños, J.F. Mosquera, P. Mutowo, M. Nowotka, M. Gordillo-Marañón, F. Hunter, L. Junco, G. Mugumbate, M. Rodriguez-Lopez, F. Atkinson, N. Bosc, C.J. Radoux, A. Segura-Cabrera, A. Hersey, and A.R. Leach, ChEMBL: Towards direct deposition of bioassay data, Nucl. Acids Res. 47 (2019), pp. D930–D940. doi:10.1093/nar/gky1075.
  • M. Swain, MolVS: molecule validation and standardization tool, 2019; software available at https://molvs.readthedocs.io/en/latest/guide/intro.html
  • G. Landrum, RDKit - open source toolkit for cheminformatics, 2013; software available at https://www.rdkit.org/docs/index.html
  • F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, JMLR. 12 (2011), pp. 2825–2830.
  • S. Jasial, Y. Hu, M. Vogt, and J. Bajorath, Activity-relevant similarity values for fingerprints and implications for similarity searching, F1000Res (2016), pp. 591. doi:10.12688/f1000research.8357.1.
  • D. Krstajic, L.J. Buturovic, D.E. Leahy, and S. Thomas, Cross-validation pitfalls when selecting and assessing regression and classification models, J. Cheminform. 6 (2014), pp. 10. doi:10.1186/1758-2946-6-10.
  • V.M. Alves, S.J. Capuzzi, R.C. Braga, D. Korn, J.E. Hochuli, K.H. Bowler, A. Yasgar, G. Rai, A. Simeonov, E.N. Muratov, A.V. Zakharov, and A. Tropsha, SCAM detective: Accurate predictor of small, colloidally aggregating molecules, J. Chem. Inf. Model. 60 (2020), pp. 4056–4063. doi:10.1021/acs.jcim.0c00415.
  • Streamlit 1.10.0. is an open-source Python library; software available at https://docs.streamlit.io/
  • G. Van Rossum and F.L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009.
  • C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J. Fernandez Del Rio, M. Wiebe, P. Peterson, P. Gerard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T.E. Oliphant, Array programming with NumPy, Nature 585 (2020), pp. 357–362. doi:10.1038/s41586-020-2649-2.
  • W. McKinney, Data structures for statistical computing in Python, 9th Python in Science Conference, Austin, 2010.
  • J.D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (2007), pp. 90–95. doi:10.1109/MCSE.2007.55.
  • Click 8.1.3. Python composable command line interface toolkit; software available at https://github.com/pallets/click
  • Joblib: Running Python functions as pipeline jobs; software available at https://joblib.readthedocs.io/en/latest/
  • S. Riniker and G.A. Landrum, Similarity maps - a visualization strategy for molecular fingerprints and machine-learning methods, J. Cheminform. 5 (2013), article number: 43. doi:10.1186/1758-2946-5-43.
  • J. Chen, J. Zhang, N.F. Shaik, B. Yi, X. Wei, X.F. Yang, U.P. Naik, R. Summer, G. Yan, X. Xu, and J. Sun, The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase, J. Biol. Chem. 294 (2019), pp. 19565–19576. doi:10.1074/jbc.RA119.011317.
  • L. Santo, T. Hideshima, A.L. Kung, J.C. Tseng, D. Tamang, M. Yang, M. Jarpe, J.H. van Duzer, R. Mazitschek, W.C. Ogier, D. Cirstea, S. Rodig, H. Eda, T. Scullen, M. Canavese, J. Bradner, K.C. Anderson, S.S. Jones, and N. Raje, Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma, Blood 119 (2012), pp. 2579–2589. doi:10.1182/blood-2011-10-387365.
  • T.E. Wood, S. Dalili, C.D. Simpson, M.A. Sukhai, R. Hurren, K. Anyiwe, X. Mao, F. Suarez Saiz, M. Gronda, Y. Eberhard, N. MacLean, T. Ketela, J.C. Reed, J. Moffat, M.D. Minden, R.A. Batey, and A.D. Schimmer, Selective inhibition of histone deacetylases sensitizes malignant cells to death receptor ligands, Mol. Cancer Ther. 9 (2010), pp. 246–256. doi:10.1158/1535-7163.MCT-09-0495.
  • Z. Yang, T. Wang, F. Wang, T. Niu, Z. Liu, X. Chen, C. Long, M. Tang, D. Cao, X. Wang, W. Xiang, Y. Yi, L. Ma, J. You, and L. Chen, Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer, J. Med. Chem. 59 (2016), pp. 1455–1470. doi:10.1021/acs.jmedchem.5b01342.
  • D.S. Khachatryan, A.N. Balaev, K.A. Okhmanovich, A.V. Kolotaev, K.R. Matevosyan, and V.N. Osipov, Method of obtaining hydroxamic acids, derivatives of 2-aryl-2.3-dihydroquinazolin-4(1h)-ones, Patent RU2744750C1, Institute of Chemical Reagents and High Purity Chemical Substances of the National Research Centre “Kurchatov Institute”, Moscow, Russia, 2020. Available at https://patents.google.com/patent/RU2744750C1/en.
  • V.N. Osipov, A.N. Balaev, A.V. Gromyko, A.V. Kolotaev, and D.S. Khachatryan, 3-hydroxyquinazoline-4(3h)-one derivatives as histone deacetylase inhibitors and a method for production thereof, Patent RU2740503C1, Institute of Chemical Reagents and High Purity Chemical Substances of the National Research Centre “Kurchatov Institute”, Moscow, Russia, 2020. Available at https://patents.google.com/patent/RU2740503C1/en
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Perspect. 111 (2003), pp. 1361–1375. doi:10.1289/ehp.5758.
  • J.H. Fentem, G.E. Archer, M. Balls, P.A. Botham, R.D. Curren, L.K. Earl, D.J. Esdaile, H.G. Holzhütter, and M. Liebsch, The ECVAM international validation study on in vitro tests for skin corrosivity. 2. results and evaluation by the management team, Toxicol. In Vitro 12 (1998), pp. 483–524. doi:10.1016/S0887-2333(98)00019-8.
  • A.A. Toropov, A.P. Toropova, G. Raitano, and E. Benfenati, CORAL: Building up QSAR models for the chromosome aberration test, Saudi J. Biol. Sci. 26 (2019), pp. 1101–1106. doi:10.1016/j.sjbs.2018.05.013.
  • V.M. Alves, T. Bobrowski, C.C. Melo‐Filho, D. Korn, S. Auerbach, C. Schmitt, E.N. Muratov, and A. Tropsha, QSAR modeling of SARS‐CoV M pro inhibitors identifies sufugolix, cenicriviroc, proglumetacin, and other drugs as candidates for repurposing against SARS‐CoV‐2, Mol. Inform. 40 (2021), pp. 2000113. doi:10.1002/minf.202000113.
  • A.S. Madsen and C.A. Olsen, A potent trifluoromethyl ketone histone deacetylase inhibitor exhibits class-dependent mechanism of action, Med. Chem. Commun. 7 (2016), pp. 464–470. doi:10.1039/C5MD00451A.
  • L.M. Butler, Y. Webb, D.B. Agus, B. Higgins, T.R. Tolentino, M.C. Kutko, M.P. LaQuaglia, M. Drobnjak, C. Cordon-Cardo, H.I. Scher, R. Breslow, V.M. Richon, R.A. Rifkind, and P.A. Marks, Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase, Clin. Cancer Res. 7 (2001), pp. 962–970.
  • T. Ehrig, K.M. Bohren, F.G. Prendergast, and K.H. Gabbay, Mechanism of aldose reductase inhibition: Binding of NADP+/NADPH and alrestatin-like inhibitors, Biochemistry 33 (1994), pp. 7157–7165. doi:10.1021/bi00189a019.
  • F.W. Peng, J. Xuan, T.T. Wu, J.Y. Xue, Z.W. Ren, D.K. Liu, X.Q. Wang, X.H. Chen, J.W. Zhang, Y.G. Xu, and L. Shi, Design, synthesis and biological evaluation of N–phenylquinazolin–4–amine hybrids as dual inhibitors of VEGFR–2 and HDAC, Eur. J. Med. Chem. 109 (2016), pp. 1–12. doi:10.1016/j.ejmech.2015.12.033.
  • F.W. Peng, T.T. Wu, Z.W. Ren, J.Y. Xue, and L. Shi, Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase, Bioorg. Med. Chem. Lett. 25 (2015), pp. 5137–5141. doi:10.1016/j.bmcl.2015.10.006.
  • C. Ding, S. Chen, C. Zhang, G. Hu, W. Zhang, L. Li, Y.Z. Chen, C. Tan, and Y. Jiang, Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy, Bioorg. Med. Chem. 25 (2017), pp. 27–37. doi:10.1016/j.bmc.2016.10.006.
  • A. Frühauf and F.J. Meyer-Almes, Non-hydroxamate zinc-binding groups as warheads for histone deacetylases, Molecules 26 (2021), pp. 5151. doi:10.3390/molecules26175151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.