287
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the Traditional Chinese Medicine (TCM) database chemical space to target I7L protease from monkeypox virus using molecular screening and simulation approaches

, , , , , , , & show all
Pages 689-708 | Received 24 May 2023, Accepted 16 Aug 2023, Published online: 07 Sep 2023

References

  • N. Berthet, S. Descorps-Declère, C. Besombes, M. Curaudeau, A.A. Nkili Meyong, B. Selekon, I. Labouba, E.C. Gonofio, R.S. Ouilibona, and H.D. Simo Tchetgna, Genomic history of human monkey pox infections in the Central African Republic between 2001 and 2018, Sci. Rep. 11 (2021), pp. 13085. doi:10.1038/s41598-021-92315-8.
  • A. Dubey, R. Singh, A. Kumar, G. Mishra, A. Gupta, A. Sonker, and A. Mishra, A critical review on changing epidemiology of human monkeypox-a current threat with multi-country outbreak, J. Pharm. Neg. Res. 13 (2022), pp. 660–671.
  • Z. Yang, M. Gray, and L. Winter, Why do poxviruses still matter? Cell Biosci. 11 (2021), pp. 1–8. doi:10.1186/s13578-021-00610-8.
  • J. Wang, M. Shahed-AI-Mahmud, A. Chen, K. Li, H. Tan, and R. Joyce, An overview of antivirals against monkeypox virus and other orthopoxviruses, J. Med. Chem. 66 (2023), pp. 4468–4490. doi:10.1021/acs.jmedchem.3c00069.
  • A. Karagoz, H. Tombuloglu, M. Alsaeed, G. Tombuloglu, A.A. AlRubaish, A. Mahmoud, S. Smajlović, S. Ćordić, A.A. Rabaan, and E. Alsuhaimi, Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis, J. Infect. Public Health 16 (2023), pp. 531–541. doi:10.1016/j.jiph.2023.02.003.
  • R.S. Karama, A. Akinola, and J. Kama, Re-emergence of human monkeypox 2022: Its ecology and public health significance-short review article, Int J. Com. Med. Pub. H. 10 (2023), pp. 1609.
  • R. Rasizadeh, A. Shamekh, P. Shiri Aghbash, and H. Bannazadeh Baghi, Comparison of human monkeypox, chickenpox and smallpox: A comprehensive review of pathology and dermatological manifestations, Curr. Med. Res. Opin. 39 (2023), pp. 751–760. doi:10.1080/03007995.2023.2200122.
  • O. Mitjà, D. Ogoina, B.K. Titanji, C. Galvan, -J.-J. Muyembe, M. Marks, and C.M. Orkin, Monkeypox, Lancet 401 (2023), pp. 60–74. doi:10.1016/S0140-6736(22)02075-X.
  • D.A. Schwartz, S. Ha, P. Dashraath, D. Baud, P.R. Pittman, and K.A. Waldorf, Monkeypox virus in pregnancy, the placenta and newborn: An emerging poxvirus with similarities to smallpox and other orthopoxvirus agents causing maternal and fetal disease, Arch. Pathol. Lab. Med. 147 (2023), pp. 746–757. doi:10.5858/arpa.2022-0520-SA.
  • S.T. Al Awaidy, F. Khamis, M. Sallam, R.M. Ghazy, and H. Zaraket, Monkeypox (mpox) outbreak: More queries posed as cases globally soar, Sultan Qaboos Univ. Med. J. 23 (2023), pp. 1–4. doi:10.18295/squmj.8.2022.046.
  • W. Yu, X. Zhang, M. Du, Y. Dong, L. Liu, H. Rong, and J. Liu, Bibliometric analysis and key messages of monkeypox research (2003–2022), Sustain 15 (2023), pp. 1005. doi:10.3390/su15021005.
  • N.L. Bragazzi, J.D. Kong, N. Mahroum, C. Tsigalou, R. Khamisy‐Farah, M. Converti, and J. Wu, Epidemiological trends and clinical features of the ongoing monkeypox epidemic: A preliminary pooled data analysis and literature review, J. Med. Virol. 95 (2023), pp. e27931. doi:10.1002/jmv.27931.
  • F. Anwar, F. Haider, S. Khan, I. Ahmad, N. Ahmed, M. Imran, S. Rashid, Z.-G. Ren, S. Khattak, and X.-Y. Ji, Clinical manifestation, transmission, pathogenesis, and diagnosis of monkeypox virus: A comprehensive review, Life 13 (2023), pp. 522. doi:10.3390/life13020522.
  • M. Amir, M. Vohra, I. Osoro, A. Sharma, and R. Kumar, Monkeypox (mpox) re-emergence: Prevalence, diagnostics, countermeasures, and its global effect, J. Zoo. Dis. 7 (2023), pp. 199–206.
  • A. Beeson, A. Styczynski, C.L. Hutson, F. Whitehill, K.M. Angelo, F.S. Minhaj, C. Morgan, K. Ciampaglio, M.G. Reynolds, and A.M. McCollum, Mpox respiratory transmission: The state of the evidence, Lancet Microbe 4 (2023), pp. e277–e283. doi:10.1016/S2666-5247(23)00034-4.
  • J. Guarner, C. Del Rio, and P.N. Malani, Monkeypox in 2022—what clinicians need to know, Jama 328 (2022), pp. 139–140. doi:10.1001/jama.2022.10802.
  • V. Katritch, C.M. Byrd, V. Tseitin, D. Dai, E. Raush, M. Totrov, R. Abagyan, R. Jordan, and D.E. Hruby, Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches, J. Comput. Aided Mol. Des. 21 (2007), pp. 549–558. doi:10.1007/s10822-007-9138-7.
  • C.M. Byrd, T.C. Bolken, and D.E. Hruby, Molecular dissection of the vaccinia virus I7L core protein proteinase, J. Virol. 77 (2003), pp. 11279–11283. doi:10.1128/JVI.77.20.11279-11283.2003.
  • C.M. Byrd and D.E. Hruby, Vaccinia virus proteolysis—A review, Rev. Med. Virol. 16 (2006), pp. 187–202. doi:10.1002/rmv.499.
  • L. Liu, T. Cooper, P.M. Howley, and J.D. Hayball, From crescent to mature virion: Vaccinia virus assembly and maturation, Viruses 6 (2014), pp. 3787–3808. doi:10.3390/v6103787.
  • A. Chevallier, Encyclopedia of Herbal Medicine: 550 Herbs and Remedies for Common Ailments, Dorling Kindersley Limited, Penguin, 2016.
  • H.-M. Fan, R.-X. Gu, Y.-J. Wang, Y.-L. Pi, Y.-H. Zhang, Q. Xu, and D.-Q. Wei, Destabilization of Alzheimer’s Aβ42 protofibrils with a novel drug candidate wgx-50 by molecular dynamics simulations, J. Phys. Chem. B 119 (2015), pp. 11196–11202. doi:10.1021/acs.jpcb.5b03116.
  • A. Khan, W. Heng, Y. Wang, J. Qiu, X. Wei, S. Peng, S. Saleem, M. Khan, S.S. Ali, and D.-Q. Wei, In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro), Phytother. Res. 35 (2021), pp. 2841–2845.
  • A. Khan, A.C. Kaushik, S.S. Ali, N. Ahmad, and D.-Q. Wei, Deep-learning-based target screening and similarity search for the predicted inhibitors of the pathways in Parkinson’s disease, RSC Adv. 9 (2019), pp. 10326–10339. doi:10.1039/C9RA01007F.
  • A. Khan, M. Khan, S. Saleem, Z. Babar, A. Ali, A.A. Khan, Z. Sardar, F. Hamayun, S.S. Ali, and D.-Q. Wei, Phylogenetic analysis and structural perspectives of RNA-dependent RNA-polymerase inhibition from SARs-CoV-2 with natural products, Interdiscip. Sci. 12 (2020), pp. 335–348. doi:10.1007/s12539-020-00381-9.
  • M.T. Khan, A. Ali, Q. Wang, M. Irfan, A. Khan, M.T. Zeb, Y.-J. Zhang, S. Chinnasamy, and D.-Q. Wei, Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2. A molecular dynamic study, J. Biomol. Struct. Dyn. 39 (2021), pp. 3627–3637. doi:10.1080/07391102.2020.1769733.
  • R.C. Silva, H.F. Freitas, J.M. Campos, N.M. Kimani, C.H. Silva, R.S. Borges, S.S. Pita, and C.B. Santos, Natural products-based drug design against SARS-CoV-2 Mpro 3CLpro, Int. J. Mol. Sci. 22 (2021), pp. 11739. doi:10.3390/ijms222111739.
  • M.A. Ibrahim, K.A. Abdeljawaad, A.H. Abdelrahman, and M.-E.F. Hegazy, Natural-like products as potential SARS-CoV-2 Mpro inhibitors: In-silico drug discovery, J. Biomol. Struct. Dyn. 39 (2021), pp. 5722–5734. doi:10.1080/07391102.2020.1790037.
  • G. Sliwoski, S. Kothiwale, J. Meiler, and E.W. Lowe, Computational methods in drug discovery, Pharmacol. Rev. 66 (2013), pp. 334–395. doi:10.1124/pr.112.007336.
  • F. Niaz, S. Tariq, S.M. Ali, R. Memon, A.J. Nashwan, and I. Ullah, Monkeypox treatment: Is tecovirimat the answer?, J. Infect. Public Health 15 (2022), pp. 1297–1298. doi:10.1016/j.jiph.2022.10.012.
  • J. Wang, C. Xu, Y.K. Wong, Y. Li, F. Liao, T. Jiang, and Y. Tu, Artemisinin, the magic drug discovered from traditional Chinese medicine, Engineering 5 (2019), pp. 32–39. doi:10.1016/j.eng.2018.11.011.
  • A.C. Marshall, Traditional Chinese medicine and clinical pharmacology, drug discovery and evaluation, Meth, Clin. Pharmacol. 2 (2020), pp. 455–482. doi:10.1007/978-3-319-68864-0_60.
  • C.-Y. Wang, X.-Y. Bai, and C.-H. Wang, Traditional Chinese medicine: A treasured natural resource of anticancer drug research and development, Am. J. Chin. Med. 42 (2014), pp. 543–559. doi:10.1142/S0192415X14500359.
  • M. Fu, Drug discovery from traditional Chinese herbal medicine using high content imaging technology, J. Trad. Chin. Med. Sci. 8 (2021), pp. 198–204.
  • J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, and A. Potapenko, Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021), pp. 583–589. doi:10.1038/s41586-021-03819-2.
  • C. Caillat, D. Topalis, L.A. Agrofoglio, S. Pochet, J. Balzarini, D. Deville-Bonne, and P. Meyer, Crystal structure of poxvirus thymidylate kinase: An unexpected dimerization has implications for antiviral therapy, Proc. Natl. Acad. Sci. USA 105 (2008), pp. 16900–16905. doi:10.1073/pnas.0804525105.
  • L. Heo, H. Park, and C. Seok, GalaxyRefine: Protein structure refinement driven by side-chain repacking, Nucleic Acids Res. 41 (2013), pp. W384–8. doi:10.1093/nar/gkt458.
  • R.A. Laskowski, M.W. MacArthur, D.S. Moss, and J.M. Thornton, PROCHECK: A program to check the stereochemical quality of protein structures, J. App. Cry. 26 (1993), pp. 283–291. doi:10.1107/S0021889892009944.
  • K. Gopalakrishnan, G. Sowmiya, S. Sheik, and K. Sekar, Ramachandran plot on the web (2.0), Protein Pept. Lett. 14 (2007), pp. 669–671. doi:10.2174/092986607781483912.
  • -C.Y.-C. Chen, TCM database@ Taiwan: The world’s largest traditional Chinese medicine database for drug screening in silico, PLoS One 6 (2011), pp. e15939. doi:10.1371/journal.pone.0015939.
  • X. Zeng, P. Zhang, W. He, C. Qin, S. Chen, L. Tao, Y. Wang, Y. Tan, D. Gao, and B. Wang, NPASS: Natural product activity and species source database for natural product research, discovery and tool development, Nucleic Acids Res. 46 (2018), pp. D1217–D1222. doi:10.1093/nar/gkx1026.
  • F. Ntie-Kang, D. Zofou, S.B. Babiaka, R. Meudom, M. Scharfe, L.L. Lifongo, J.A. Mbah, L.M.A. Mbaze, W. Sippl, and S.M. Efange, AfroDb: A select highly potent and diverse natural product library from African medicinal plants, PLoS One 8 (2013), pp. e78085. doi:10.1371/journal.pone.0078085.
  • M. Sorokina, P. Merseburger, K. Rajan, M.A. Yirik, and C. Steinbeck, COCONUT online: Collection of open natural products database, J. Cheminform. 13 (2021), pp. 1–13. doi:10.1186/s13321-020-00478-9.
  • D.R. Koes, M.P. Baumgartner, and C.J. Camacho, Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise, J. Chem. Inf. Model. 53 (2013), pp. 1893–1904. doi:10.1021/ci300604z.
  • P.A. Ravindranath, S. Forli, D.S. Goodsell, A.J. Olson, and M.F. Sanner, AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility, PLoS Comput. Biol. 11 (2015), pp. e1004586. doi:10.1371/journal.pcbi.1004586.
  • W.L. DeLano, Pymol: An open-source molecular graphics tool, CCP4 Newsletter on Protein Crystallography 40 (2002), pp. 82–92.
  • J. Bell, Y. Cao, J. Gunn, T. Day, E. Gallicchio, Z. Zhou, R. Levy, and R. Farid, PrimeX and the Schrödinger computational chemistry suite of programs, Cry. Bio. Mac. 5 (2012), pp. 9–25.
  • D.A. Case, T.E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr, A. Onufriev, C. Simmerling, B. Wang, and R.J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005), pp. 1668–1688. doi:10.1002/jcc.20290.
  • D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham III, S. DeBolt, D. Ferguson, G. Seibel, and P. Kollman, AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Com. Phy. Comm. 91 (1995), pp. 1–41. doi:10.1016/0010-4655(95)00041-D.
  • J. Wang, W. Wang, P.A. Kollman, and D.A. Case, Antechamber: An accessory software package for molecular mechanical calculations, J. Am. Chem. Soc. 222 (2001), pp. U403.
  • R. Salomon-Ferrer, A.W. Götz, D. Poole, S. Le Grand, and R.C. Walker, Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald, J. Chem. Theory Comput. 9 (2013), pp. 3878–3888. doi:10.1021/ct400314y.
  • D.R. Roe and T.E. Cheatham III, PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theory Comput. 9 (2013), pp. 3084–3095. doi:10.1021/ct400341p.
  • F. Chen, H. Liu, H. Sun, P. Pan, Y. Li, D. Li, and T. Hou, Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking, Phys. Chem. Chem. Phys. 18 (2016), pp. 22129–22139. doi:10.1039/C6CP03670H.
  • Y. Wang, A. Khan, A. Chandra Kaushik, M. Junaid, X. Zhang, and D.-Q. Wei, The systematic modeling studies and free energy calculations of the phenazine compounds as anti-tuberculosis agents, J. Biomol. Struct. Dyn. 37 (2019), pp. 4051–4069. doi:10.1080/07391102.2018.1537896.
  • A. Vangone, J. Schaarschmidt, P. Koukos, C. Geng, N. Citro, M.E. Trellet, L.C. Xue, and A.M. Bonvin, Large-scale prediction of binding affinity in protein–small ligand complexes: The PRODIGY-LIG web server, Bioinformatics 35 (2019), pp. 1585–1587. doi:10.1093/bioinformatics/bty816.
  • A. Khan, S.S. Ali, M.T. Khan, S. Saleem, A. Ali, M. Suleman, Z. Babar, A. Shafiq, M. Khan, and D.-Q. Wei, Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS-CoV-2 main protease (3CLpro), J. Biomol. Struct. Dyn. 39 (2021), pp. 4659–4670. doi:10.1080/07391102.2020.1779128.
  • X.T. Yan, W. Li, Y.N. Sun, S.Y. Yang, S.H. Lee, J.B. Chen, H.D. Jang, and Y.H. Kim, Identification and biological evaluation of flavonoids from the fruits of Prunus mume, Bioorg. Med. Chem. Lett. 24 (2014), pp. 1397–1402. doi:10.1016/j.bmcl.2014.01.028.
  • Z.T. Naman, S. Kadhim, Z.J.K. Al-Isawi, C.J. Butch, and Z.T. Muhseen, Computational Investigations of traditional Chinese medicinal compounds against the omicron variant of SARS-CoV-2 to rescue the host immune system, Pharmaceuticals (Basel) 15 (2022), pp. 741. doi:10.3390/ph15060741.
  • M. Novaković, M. Pešić, S. Trifunović, I. Vučković, N. Todorović, A. Podolski-Renić, J. Dinić, S. Stojković, V. Tešević, V. Vajs, and S. Milosavljević, Diarylheptanoids from the bark of black alder inhibit the growth of sensitive and multi-drug resistant non-small cell lung carcinoma cells, Phytochemistry 97 (2014), pp. 46–54. doi:10.1016/j.phytochem.2013.11.001.
  • Y.C. Lai, C.K. Chen, W.W. Lin, and S.S. Lee, A comprehensive investigation of anti-inflammatory diarylheptanoids from the leaves of Alnus formosana, Phytochemistry 73 (2012), pp. 84–94. doi:10.1016/j.phytochem.2011.02.008.
  • S. Suriyarak, M. Gibis, H. Schmidt, P. Villeneuve, and J. Weiss, Antimicrobial mechanism and activity of dodecyl rosmarinate against Staphylococcus carnosus LTH1502 as influenced by addition of salt and change in pH, J. Food Prot. 77 (2014), pp. 444–452. doi:10.4315/0362-028X.JFP-13-239.
  • C. Bayrasy, B. Chabi, M. Laguerre, J. Lecomte, E. Jublanc, P. Villeneuve, C. Wrutniak-Cabello, and G. Cabello, Boosting antioxidants by lipophilization: A strategy to increase cell uptake and target mitochondria, Pharm. Res. 30 (2013), pp. 1979–1989. doi:10.1007/s11095-013-1041-4.
  • T. Huang, Y. Liu, and C. Zhang, Pharmacokinetics and bioavailability enhancement of baicalin: A review, Eur. J. Drug Metab. Pharm. 44 (2019), pp. 159–168. doi:10.1007/s13318-018-0509-3.
  • A. Dodaro, M. Pavan, and S. Moro, Targeting the i7l protease: A rational design for anti-monkeypox drugs? Int. J. Mol. Sci. 24 (2023), pp. 7119. doi:10.3390/ijms24087119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.