268
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discovery of dual-target natural antimalarial agents against DHODH and PMT of Plasmodium falciparum: pharmacophore modelling, molecular docking, quantum mechanics, and molecular dynamics simulations

, , , , , , , , , , , , , , & show all
Pages 709-728 | Received 02 Jul 2023, Accepted 18 Aug 2023, Published online: 04 Sep 2023

References

  • M. Schmidt, V. Hrabcova, D. Jun, K. Kuca, and K. Musilek, Vector control and insecticidal resistance in the African malaria mosquito Anopheles gambiae, Chem. Res. Toxicol. 31 (2018), pp. 534–547. doi:10.1021/acs.chemrestox.7b00285.
  • M. Imwong, S. Nakeesathit, N.P.J. Day, and N.J. White, A review of mixed malaria species infections in anopheline mosquitoes, Malar. J. 10 (2011), pp. 253–266. doi:10.1186/1475-2875-10-253.
  • A.L. Conroy, D. Datta, and C.C. John, What causes severe malaria and its complications in children? Lessons learned over the past, BMC Med. 17 (2019), pp. 10–13. doi:10.1186/s12916-019-1291-z.
  • A. Singh, M. Maqbool, M. Mobashir, and N. Hoda, Dihydroorotate dehydrogenase: A drug target for the development of antimalarials, Eur. J. Med. Chem. 125 (2017), pp. 640–651. doi:10.1016/j.ejmech.2016.09.085.
  • L. Felipe, S.P. Azeredo, J.P. Coutinho, V.A.P. Jabor, P.R. Feliciano, M. Cristina, C.R. Kaiser, C. Maria, S. Menezes, A.S.O. Hammes, E. Raul, L.V.B. Hoelz, and N.B. De Souza, Plasmodium falciparum, antimalarial, and Pf- dihydroorotate dehydrogenase inhibitors, Eur. J. Med. Chem. 126 (2017), pp. 72–83. doi:10.1016/j.ejmech.2016.09.073.
  • L.V. Hoelz, F.A. Calil, M.C. Nonato, L.C. Pinheiro, and N. Boechat, Plasmodium falciparum dihydroorotate dehydrogenase: A drug target against malaria, Future Med. Chem. 10 (2018), pp. 1853–1874. doi:10.4155/fmc-2017-0250.
  • E.L. Flannery, L. Foquet, V. Chuenchob, M. Fishbaugher, Z. Billman, M.J. Navarro, W. Betz, T.M. Olsen, J. Lee, N. Camargo, B. Campo, S.A. Charman, S.C. Murphy, M.A. Phillips, S.H. Kappe, and S.A. Mikolajczak, Assessing drug efficacy against Plasmodium falciparum liver stages in vivo, JCI Insight 3 (2018), pp. 1–25. doi:10.1172/jci.insight.92587.
  • M.A. Phillips, J.W. Njoroge, M. Delves, R. Sinden, A. Ruecker, K.S. Wickham, R. Rochford, T. Rueckle, and X. Ding, A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria, Sci. Transl. Med. 7 (2015), pp. 1–30. doi:10.1126/scitranslmed.aaa6645.
  • M. Calas, M.L. Ancelin, G. Cordina, P. Portefaix, G. Piquet, V. Vidal-Sailhan, and H. Vial, Antimalarial activity of compounds interfering with Plasmodium falciparum phospholipid metabolism: Comparison between mono- and bisquaternary ammonium salts, J. Med. Chem. 43 (2000), pp. 505–516. doi:10.1021/jm9911027.
  • S.G. Lee, Y. Kim, D. Tara, A. Nagata, and J.M. Jez, Structure and reaction mechanism of phosphoethanolamine methyltransferase from the malaria parasite Plasmodium falciparum, J. Biol. Chem. 287 (2012), pp. 1426–1434. doi:10.1074/jbc.M111.315267.
  • J.-Y. Choi, Y. Augagneur, C. Ben Mamoun, and D.R. Voelker, Identification of gene encoding Plasmodium knowlesi phosphatidylserine decarboxylase by genetic complementation in yeast and characterization of in vitro maturation of encoded enzyme, J. Biol. Chem. 287 (2011), pp. 222–232. doi:10.1074/jbc.M111.313676.
  • M. Álvarez-Bardón, Y. Pérez-Pertejo, C. Ordóñez, D. Sepúlveda-Crespo, N.M. Carballeira, B.L. Tekwani, S. Murugesan, M. Martinez-Valladares, C. García-Estrada, R.M. Reguera, and R. Balaña-Fouce, Screening marine natural products for new drug leads against trypanosomatids and malaria, Mar. Drugs 18 (2020), pp. 1–41. doi:10.3390/md18040187.
  • H. Yuan, Q. Ma, L. Ye, and G. Piao, The traditional medicine and modern medicine from natural products, Molecules 21 (2016), pp. 1–26. doi:10.3390/molecules21050559.
  • T.T. Ho, Q.T. Tran, and C.L. Chai, The polypharmacology of natural products, Future Med. Chem. 10 (2018), pp. 1361–1368. doi:10.4155/fmc-2017-0294.
  • K.S. Bhadoriya, N.K. Kumawat, S.V. Bhavthankar, M.H. Avchar, D.M. Dhumal, S.D. Patil, and S.V. Jain, Exploring 2D and 3D QSARs of benzimidazole derivatives as transient receptor potential melastatin 8 (TRPM8) antagonists using MLR and kNN-MFA methodology, J. Saudi Chem. Soc. 20 (2016), pp. S256–S270. doi:10.1016/j.jscs.2012.11.001.
  • G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided. Mol. Des. 27 (2013), pp. 221–234. doi:10.1007/s10822-013-9644-8.
  • N.K. Salam, R. Nuti, and W. Sherman, Novel method for generating structure-based pharmacophores using energetic analysis, J. Chem. Inf. Model. 49 (2009), pp. 2356–2368. doi:10.1021/ci900212v.
  • P.D. Lyne, M.L. Lamb, and J.C. Saeh, Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring, J. Med. Chem. 49 (2006), pp. 4805–4808. doi:10.1021/jm060522a.
  • V. Suryanarayanan and S.K. Singh, Assessment of dual inhibition property of newly discovered inhibitors against PCAF and GCN5 through in silico screening, molecular dynamics simulation and DFT approach, J. Recept. Signal Transduct. 35 (2015), pp. 370–380. doi:10.3109/10799893.2014.956756.
  • J.H. Zothantluanga and D. Chetia, A beginner’s guide to molecular docking, Sci. Phytochem. 1 (2022), pp. 37–40.
  • M. Sarma, M. Abdalla, J.H. Zothantluanga, F. Abdullah Thagfan, A.K. Umar, D. Chetia, T.N. Almanaa, and S.T. Al-Shouli, Multi-target molecular dynamic simulations reveal glutathione-S-transferase as the most favorable drug target of knipholone in Plasmodium falciparum, J. Biomol. Struct. Dyn. (2023), pp. 1–28.
  • J.H. Zothantluanga, M. Abdalla, M. Rudrapal, Q. Tian, D. Chetia, and J. Li, Computational investigations for identification of bioactive molecules from Baccaurea ramiflora and Bergenia ciliata as inhibitors of SARS-CoV-2 Mpro, Polycyclic Aromat. Compd. 43 (2022), pp. 2459–2487. doi:10.1080/10406638.2022.2046613.
  • M. Ahinko, S. Niinivehmas, E. Jokinen, and O.T. Pentikäinen, Suitability of MMGBSA for the selection of correct ligand binding modes from docking results, Chem. Biol. Drug Des. 93 (2019), pp. 522–538. doi:10.1111/cbdd.13446.
  • U. Norinder and C.A.S. Bergström, Prediction of ADMET properties, ChemMedChem 1 (2006), pp. 920–937. doi:10.1002/cmdc.200600155.
  • A. Llanos-cuentas, M. Casapia, R. Chuquiyauri, J. Hinojosa, N. Kerr, M. Rosario, S. Toovey, R.H. Arch, M.A. Phillips, F.D. Rozenberg, J. Bath, C.L. Ng, A.N. Cowell, E.A. Winzeler, D.A. Fidock, M. Baker, and J.J. Möhrle, Articles Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection : A proof-of-concept, open-label, phase 2a stud, Lancet Infect. Dis. 3099 (2018), pp. 1–10.
  • A.M. Bobenchik, J.Y. Choi, A. Mishra, I.N. Rujan, B. Hao, D.R. Voelker, J.C. Hoch, and C. Mamoun, Identification of inhibitors of Plasmodium falciparum phosphoethanolamine methyltransferase using an enzyme-coupled transmethylation assay, BMC Biochem. 11 (2010), pp. 1–30. doi:10.1186/1471-2091-11-4.
  • S. Wang, Y. Li, J. Wang, L. Chen, L. Zhang, H. Yu, and T. Hou, ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage, Mol. Pharm. 9 (2012), pp. 996–1010. doi:10.1021/mp300023x.
  • M.L. Booker, C.M. Bastos, R. Wiegand, and E. Sybertza, Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model, J. Biol. Chem. 285 (2010), pp. 33054–33064. doi:10.1074/jbc.M110.162081.
  • P.T.P. Bedingfield, D. Cowen, P. Acklam, F. Cunningham, M.R. Parsons, G.A. McConkey, C.W.G. Fishwick, and A.P. Johnson, Factors influencing the specificity of inhibitor binding to the human and malaria parasite dihydroorotate dehydrogenases, J. Med. Chem. 55 (2012), pp. 5841–5850. doi:10.1021/jm300157n.
  • L.S. Ross, F.J. Gamo, M.J. Lafuente-Monasterio, O.M.P. Singh, P. Rowland, R.C. Wiegand, and D.F. Wirth, In vitro resistance selections for Plasmodium falciparum dihydroorotate dehydrogenase inhibitors give mutants with multiple point mutations in the drug-binding site and altered growth, J. Biol. Chem. 289 (2014), pp. 17980–17995. doi:10.1074/jbc.M114.558353.
  • X. Deng, R. Gujjar, F. El Mazouni, W. Kaminsky, N.A. Malmquist, E.J. Goldsmith, P.K. Rathod, and M.A. Phillips, Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds, J. Biol. Chem. 284 (2009), pp. 26999–27018. doi:10.1074/jbc.M109.028589.
  • R.E.K. Mandt, M.J. Lafuente-Monasterio, T. Sakata-Kato, M.R. Luth, D. Segura, A. Pablos-Tanarro, S. Viera, N. Magan, S. Ottilie, E.A. Winzeler, A.K. Lukens, F.J. Gamo, and D.F. Wirth, In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model, Sci. Transl. Med. 11 (2019), pp. 1–14. doi:10.1126/scitranslmed.aav1636.
  • S.G. Lee, T.D. Alpert, and J.M. Jez, Crystal structure of phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with amodiaquine, Bioorg. Med. Chem. Lett. 22 (2012), pp. 4990–4993. doi:10.1016/j.bmcl.2012.06.032.
  • A. Owoloye, Molecular docking analysis of Plasmodium falciparum dihydroorotate dehydrogenase pfDHODH from towards the design of effective inhibitors, Bioinformation 16 (2020), pp. 672–678. doi:10.6026/97320630016672.
  • A. Wadood and Z. Ulhaq, In silico identification of novel inhibitors against Plasmodium falciparum dihydroorate dehydrogenase, J. Mol. Graph. Model. 40 (2013), pp. 40–47. doi:10.1016/j.jmgm.2012.11.010.
  • R. Rawat and S.M. Verma, High-throughput virtual screening approach involving pharmacophore mapping, ADME filtering, molecular docking and MM-GBSA to identify new dual target inhibitors of PfDHODH and PfCytbc1 complex to combat drug resistant malaria, J. Biomol. Struct. Dyn. 39 (2021), pp. 5148–5159. doi:10.1080/07391102.2020.1784288.
  • J. Singh, S. Vijay, R. Mansuri, R. Rawal, K. Kadian, G.C. Sahoo, M. Kumar, and A. Sharma, Computational and experimental elucidation of Plasmodium falciparum phosphoethanolamine methyltransferase inhibitors: Pivotal drug target, PLoS One 14 (2019), pp. 1–21. doi:10.1371/journal.pone.0221032.
  • J. Singh, R. Mansuri, S. Vijay, G.C. Sahoo, A. Sharma, and M. Kumar, Docking predictions based Plasmodium falciparum phosphoethanolamine methyl transferase inhibitor identification and in ‑ vitro antimalarial activity analysis, BMC Chem. 13 (2019), pp. 1–13. doi:10.1186/s13065-019-0516-8.
  • K. Umar, J.H. Zothantluanga, J.A. Luckanagul, P. Limpikirati, and S. Sriwidodo, Structure-based computational screening of 470 natural quercetin derivatives for identification of SARS-CoV-2 Mpro inhibitor, PeerJ 11 (2023), pp. 14915–14935. doi:10.7717/peerj.14915.
  • M. Rudrapal, I. Celik, J. Khan, M.A. Ansari, M.N. Alomary, R. Yadav, T. Sharma, T.E. Tallei, P.K. Pasala, R.K. Sahoo, S.J. Khairnar, A.R. Bendale, J.H. Zothantluanga, D. Chetia, and S.G. Walode, Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations, J. King Saud Univ. - Sci. 34 (2022), pp. 101826–101852. doi:10.1016/j.jksus.2022.101826.
  • M. Rudrapal, I. Celik, S. Chinnam, M. Azam Ansari, J. Khan, S. Alghamdi, M. Almehmadi, J.H. Zothantluanga, and S.J. Khairnar, Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi J. Biol. 29 (2022), pp. 3456–3465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.