267
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring molecular interactions of potential inhibitors against the spleen tyrosine kinase implicated in autoimmune disorders via virtual screening and molecular dynamics simulations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 869-897 | Received 03 Jul 2023, Accepted 19 Sep 2023, Published online: 26 Oct 2023

References

  • A. Richard-Eaglin and B.A. Smallheer, Immunosuppressive/autoimmune disorders, Nurs. Clin. North Am. 53 (2018), pp. 319–334. doi:10.1016/j.cnur.2018.04.002.
  • Y. Shao, S. Zhang, Y. Zhang, and Z. Liu, Recent advance of spleen tyrosine kinase in diseases and drugs, Int. Immunopharmacol. 90 (2021), pp. 107168. doi:10.1016/j.intimp.2020.107168.
  • G. Ku and B. Malissen, Chromosomal location of the Syk and ZAP-70 tyrosine kinase genes in mice and humans, Immunogenetics 40 (1994), pp. 300–302. doi:10.1007/BF00189976.
  • P.A. Goodman, C.M. Wood, A. Vassilev, C. Mao, and F.M. Uckun, Spleen tyrosine kinase (Syk) deficiency in childhood pro-B cell acute lymphoblastic leukemia, Oncogene 20 (2001), pp. 3969–3978. doi:10.1038/sj.onc.1204515.
  • K. Sada, T. Takano, S. Yanagi, and H. Yamamura, Structure and function of Syk protein-tyrosine kinase, J. Biochem. 130 (2001), pp. 177–186. doi:10.1093/oxfordjournals.jbchem.a002970.
  • S.P. McAdoo and F.W.K. Tam, Spleen tyrosine kinase: A novel target in autoimmunity, in Immunosuppression - Role in Health and Diseases, S. Kapur, ed., InTech, London, 2012, pp. 41–56.
  • S. Ben Mkaddem, M. Benhamou, and R.C. Monteiro, Understanding Fc receptor involvement in inflammatory diseases: From mechanisms to new therapeutic tools, Front. Immunol. 10 (2019), pp. 811. doi:10.3389/fimmu.2019.00811.
  • A. Mócsai, J. Ruland, and V.L.J. Tybulewicz, The SYK tyrosine kinase: A crucial player in diverse biological functions, Nat. Rev. Immunol. 10 (2010), pp. 387–402. doi:10.1038/nri2765.
  • T. Takai, Roles of Fc receptors in autoimmunity, Nat. Rev. Immunol. 2 (2002), pp. 580–592. doi:10.1038/nri856.
  • F. Nimmerjahn, Activating and inhibitory FcγRs in autoimmune disorders, Springer Semin. Immunopathol. 28 (2006), pp. 305–319. doi:10.1007/s00281-006-0052-1.
  • S. Dubey, P. Prabitha, S. Bhardwaj, and E. Singh, A study of pyrazolo-benzimidazole derivatives as spleen tyrosine kinase inhibitors: An in-silico approach, Struct. Chem. 30 (2019), pp. 263–272. doi:10.1007/s11224-018-1189-y.
  • M.-C. Tung, K.-C. Tsai, K.-M. Fung, M.-J. Don, and T.-S. Tseng, Characterizing the structure–Activity relationships of natural products, tanshinones, reveals their mode of action in inhibiting spleen tyrosine kinase, RSC Adv. 11 (2021), pp. 2453–2461. doi:10.1039/D0RA08769F.
  • S. Braselmann, V. Taylor, H. Zhao, S. Wang, C. Sylvain, M. Baluom, K. Qu, E. Herlaar, A. Lau, C. Young, B.R. Wong, S. Lovell, T. Sun, G. Park, A. Argade, S. Jurcevic, P. Pine, R. Singh, E.B. Grossbard, D.G. Payan, and E.S. Masuda, R406, an orally available spleen tyrosine kinase inhibitor blocks Fc receptor signaling and reduces immune complex-mediated inflammation, J. Pharmacol. Exp. Ther. 319 (2006), pp. 998–1008. doi:10.1124/jpet.106.109058.
  • A.G. Villaseñor, R. Kondru, H. Ho, S. Wang, E. Papp, D. Shaw, J.W. Barnett, M.F. Browner, and A. Kuglstatter, Structural insights for design of potent spleen tyrosine kinase inhibitors from crystallographic analysis of three inhibitor complexes, Chem. Biol. Drug Des. 73 (2009), pp. 466–470. doi:10.1111/j.1747-0285.2009.00785.x.
  • A. Mullard, FDA approves first-in-class SYK inhibitor, Nat. Rev. Drug Discov. 17 (2018), pp. 385. doi:10.1038/nrd.2018.96.
  • S. Bartaula-Brevik, M.K. Lindstad Brattås, T.H.A. Tvedt, H. Reikvam, and Ø. Bruserud, Splenic tyrosine kinase (SYK) inhibitors and their possible use in acute myeloid leukemia, Expert Opin. Invest. Drugs 27 (2018), pp. 377–387. doi:10.1080/13543784.2018.1459562.
  • C. Mang, S. Jakupovic, S. Schunk, H.-D. Ambrosi, O. Schwarz, and J. Jakupovic, Natural products in combinatorial chemistry: An andrographolide-based library, J. Comb. Chem. 8 (2006), pp. 268–274. doi:10.1021/cc050143n.
  • M.S. Mansueto, A. Reens, L. Rakhilina, A. Chi, B.-S. Pan, and J.R. Miller, A reevaluation of the spleen tyrosine kinase (SYK) activation mechanism, J. Biol. Chem. 294 (2019), pp. 7658–7668. doi:10.1074/jbc.RA119.008045.
  • B. Webb and A. Sali, Comparative protein structure modeling using MODELLER, Curr. Protoc. Bioinf. 54 (2016), pp. 5.6.1–.5.6.37. doi:10.1002/cpbi.3.
  • E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004), pp. 1605–1612. doi:10.1002/jcc.20084.
  • D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, I.T.E. Cheatham, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene, R. Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, J. Smith, R. SalomonFerrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao, D.M. York, and P.A. Kollman, Amber 2018. Univ. Calif. San Franc. (2018). software available at https://ambermd.org.
  • J. Wang, W. Wang, P.A. Kollman, and D.A. Case, Automatic atom type and bond type perception in molecular mechanical calculations, J. Mol. Graph. Model. 25 (2006), pp. 247–260. doi:10.1016/j.jmgm.2005.12.005.
  • J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, and C. Simmerling, ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput. 11 (2015), pp. 3696–3713. doi:10.1021/acs.jctc.5b00255.
  • J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004), pp. 1157–1174. doi:10.1002/jcc.20035.
  • N. Homeyer, A.H.C. Horn, H. Lanig, and H. Sticht, AMBER force-field parameters for phosphorylated amino acids in different protonation states: Phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine, J. Mol. Model. 12 (2006), pp. 281–289. doi:10.1007/s00894-005-0028-4.
  • D.J. Price and C.L. Brooks, A modified TIP3P water potential for simulation with Ewald summation, J. Chem. Phys. 121 (2004), pp. 10096–10103. doi:10.1063/1.1808117.
  • G.M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (2013), pp. 221–234. doi:10.1007/s10822-013-9644-8.
  • C.R. Søndergaard, M.H.M. Olsson, M. Rostkowski, and J.H. Jensen, Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values, J. Chem. Theory Comput. 7 (2011), pp. 2284–2295. doi:10.1021/ct200133y.
  • E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J.Y. Xiang, L. Wang, D. Lupyan, M.K. Dahlgren, J.L. Knight, J.W. Kaus, D.S. Cerutti, G. Krilov, W.L. Jorgensen, R. Abel, and R.A. Friesner, OPLS3: A force field providing broad coverage of drug-like small molecules and proteins, J. Chem. Theory Comput. 12 (2016), pp. 281–296. doi:10.1021/acs.jctc.5b00864.
  • LigPrep. Schrödinger, LLC, New York, NY, 2023. software available at https://www.schrodinger.com/products/ligprep.
  • J.R. Greenwood, D. Calkins, A.P. Sullivan, and J.C. Shelley, Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution, J. Comput. Aided Mol. Des. 24 (2010), pp. 591–604. doi:10.1007/s10822-010-9349-1.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, and P.S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem. 47 (2004), pp. 1739–1749. doi:10.1021/jm0306430.
  • T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, and J.L. Banks, Glide: A new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening, J. Med. Chem. 47 (2004), pp. 1750–1759. doi:10.1021/jm030644s.
  • R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, and D.T. Mainz, Extra precision Glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes, J. Med. Chem. 49 (2006), pp. 6177–6196. doi:10.1021/jm051256o.
  • G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, and D. Cao, ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res. 49 (2021), pp. W5–W14. doi:10.1093/nar/gkab255.
  • D.R. Roe and T.E. Cheatham, PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theory Comput. 9 (2013), pp. 3084–3095. doi:10.1021/ct400341p.
  • T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092. doi:10.1063/1.464397.
  • V. Kräutler, W.F. van Gunsteren, and P.H. Hünenberger, A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations, J. Comput. Chem. 22 (2001), pp. 501–508. doi:10.1002/1096-987X(20010415)22:5<501:AID-JCC1021>3.0.CO;2-V.
  • H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984), pp. 3684–3690. doi:10.1063/1.448118.
  • R.W. Pastor, B.R. Brooks, and A. Szabo, An analysis of the accuracy of Langevin and molecular dynamics algorithms, Mol. Phys. 65 (1988), pp. 1409–1419. doi:10.1080/00268978800101881.
  • P.H. Hünenberger, A.E. Mark, and W.F. van Gunsteren, Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations, J. Mol. Biol. 252 (1995), pp. 492–503. doi:10.1006/jmbi.1995.0514.
  • B.J. Grant, A.P.C. Rodrigues, K.M. ElSawy, J.A. McCammon, and L.S.D. Caves, Bio3d: An R package for the comparative analysis of protein structures, Bioinformatics 22 (2006), pp. 2695–2696. doi:10.1093/bioinformatics/btl461.
  • T. Ichiye and M. Karplus, Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins 11 (1991), pp. 205–217. doi:10.1002/prot.340110305.
  • A. Felline, M. Seeber, and F. Fanelli, webPSN v2.0: A webserver to infer fingerprints of structural communication in biomacromolecules, Nucleic Acids Res. 48 (2020), pp. W94–W103. doi:10.1093/nar/gkaa397.
  • W. Sun, The relationship between low-frequency motions and community structure of residue network in protein molecules, J. Comput. Biol. 25 (2018), pp. 103–113. doi:10.1089/cmb.2017.0171.
  • W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996), pp. 33–38. doi:10.1016/0263-7855(96)00018-5.
  • B.R. Miller, T.D. McGee, J.M. Swails, N. Homeyer, H. Gohlke, and A.E. Roitberg, MMPBSA.py: An efficient program for end-state free energy calculations, J. Chem. Theory Comput. 8 (2012), pp. 3314–3321. doi:10.1021/ct300418h.
  • P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, and T.E. Cheatham, Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models, Acc. Chem. Res. 33 (2000), pp. 889–897. doi:10.1021/ar000033j.
  • M.F. Sk, N.A. Jonniya, R. Roy, S. Poddar, and P. Kar, Computational investigation of structural dynamics of SARS-CoV-2 methyltransferase-stimulatory factor heterodimer nsp16/nsp10 bound to the cofactor SAM, Front. Mol. Biosci. 7 (2020), pp. 590165. doi:10.3389/fmolb.2020.590165.
  • M.F. Sk, R. Roy, N.A. Jonniya, S. Poddar, and P. Kar, Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations, J. Biomol. Struct. Dyn. 39 (2021), pp. 3649–3661. doi:10.1080/07391102.2020.1768149.
  • T.M. Creanza, G. Lamanna, P. Delre, M. Contino, N. Corriero, M. Saviano, G.F. Mangiatordi, and N. Ancona, DeLA-Drug: A deep learning algorithm for automated design of druglike analogues, J. Chem. Inf. Model. 62 (2022), pp. 1411–1424. doi:10.1021/acs.jcim.2c00205.
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 23 (1997), pp. 3–25. doi:10.1016/S0169-409X(96)00423-1.
  • M.P. Gleeson, Generation of a set of simple, interpretable ADMET rules of thumb, J. Med. Chem. 51 (2008), pp. 817–834. doi:10.1021/jm701122q.
  • T.W. Johnson, K.R. Dress, and M. Edwards, Using the golden triangle to optimize clearance and oral absorption, Bioorg. Med. Chem. Lett. 19 (2009), pp. 5560–5564. doi:10.1016/j.bmcl.2009.08.045.
  • G.R. Bickerton, G.V. Paolini, J. Besnard, S. Muresan, and A.L. Hopkins, Quantifying the chemical beauty of drugs, Nat. Chem. 4 (2012), pp. 90–98. doi:10.1038/nchem.1243.
  • P. Ertl and A. Schuffenhauer, Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions, J. Cheminf. 1 (2009), pp. 8. doi:10.1186/1758-2946-1-8.
  • F. Lovering, J. Bikker, and C. Humblet, Escape from flatland: Increasing saturation as an approach to improving clinical success, J. Med. Chem. 52 (2009), pp. 6752–6756. doi:10.1021/jm901241e.
  • Y.A. Ivanenkov, B.A. Zagribelnyy, and V.A. Aladinskiy, Are we opening the door to a new era of medicinal chemistry or being collapsed to a chemical singularity? J. Med. Chem. 62 (2019), pp. 10026–10043. doi:10.1021/acs.jmedchem.9b00004.
  • P. Ertl, S. Roggo, and A. Schuffenhauer, Natural product-likeness score and its application for prioritization of compound libraries, J. Chem. Inf. Model. 48 (2008), pp. 68–74. doi:10.1021/ci700286x.
  • M.L. Amin, P-glycoprotein inhibition for optimal drug delivery, Drug Target Insights 7 (2013), pp. 27–34. doi:10.4137/DTI.S12519.
  • P. Breedveld, J.H. Beijnen, and J.H.M. Schellens, Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs, Trends Pharmacol. Sci. 27 (2006), pp. 17–24. doi:10.1016/j.tips.2005.11.009.
  • N.A. Colabufo, F. Berardi, M. Cantore, M. Contino, C. Inglese, M. Niso, and R. Perrone, Perspectives of P-glycoprotein modulating agents in oncology and neurodegenerative diseases: Pharmaceutical, biological, and diagnostic potentials, J. Med. Chem. 53 (2010), pp. 1883–1897. doi:10.1021/jm900743c.
  • D. Paris, G. Ait-Ghezala, C. Bachmeier, G. Laco, D. Beaulieu-Abdelahad, Y. Lin, C. Jin, F. Crawford, and M. Mullan, The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid-β production and Tau hyperphosphorylation, J. Biol. Chem. 289 (2014), pp. 33927–33944. doi:10.1074/jbc.M114.608091.
  • J.E. Schweig, H. Yao, K. Coppola, C. Jin, F. Crawford, M. Mullan, and D. Paris, Spleen tyrosine kinase (SYK) blocks autophagic tau degradation in vitro and in vivo, J. Biol. Chem. 294 (2019), pp. 13378–13395. doi:10.1074/jbc.RA119.008033.
  • E. Tanaka, Clinically important pharmacokinetic drug-drug interactions: Role of cytochrome P450 enzymes, J. Clin. Pharm. Ther. 23 (1998), pp. 403–416. doi:10.1046/j.1365-2710.1998.00086.x.
  • M.C. Sanguinetti and M. Tristani-Firouzi, hERG potassium channels and cardiac arrhythmia, Nature 440 (2006), pp. 463–469. doi:10.1038/nature04710.
  • J.I. Vandenberg, M.D. Perry, M.J. Perrin, S.A. Mann, Y. Ke, and A.P. Hill, HERG K + channels: Structure, function, and clinical significance, Physiol. Rev. 92 (2012), pp. 1393–1478. doi:10.1152/physrev.00036.2011.
  • A. Metz, C. Pfleger, H. Kopitz, S. Pfeiffer-Marek, K.-H. Baringhaus, and H. Gohlke, Hot spots and transient pockets: Predicting the determinants of small-molecule binding to a protein–protein interface, J. Chem. Inf. Model. 52 (2012), pp. 120–133. doi:10.1021/ci200322s.
  • T. Xie, J. Yu, W. Fu, Z. Wang, L. Xu, S. Chang, E. Wang, F. Zhu, S. Zeng, Y. Kang, and T. Hou, Insight into the selective binding mechanism of DNMT1 and DNMT3A inhibitors: A molecular simulation study, Phys. Chem. Chem. Phys. 21 (2019), pp. 12931–12947. doi:10.1039/C9CP02024A.
  • V. Kumar, S. Parate, Danishuddin, A. Zeb, P. Singh, G. Lee, T.S. Jung, K.W. Lee, and M.W. Ha, 3D-QSAR-based pharmacophore modeling, virtual screening, and molecular dynamics simulations for the identification of spleen tyrosine kinase inhibitors, Front. Cell. Infect. Microbiol. 12 (2022), pp. 909111. doi:10.3389/fcimb.2022.909111.
  • J.A. Endicott, M.E.M. Noble, and L.N. Johnson, The structural basis for control of eukaryotic protein kinases, Annu. Rev. Biochem. 81 (2012), pp. 587–613. doi:10.1146/annurev-biochem-052410-090317.
  • M.F. Sk and P. Kar, Finding inhibitors and deciphering inhibitor-induced conformational plasticity in the janus kinase via multiscale simulations, SAR QSAR Environ. Res. 33 (2022), pp. 833–859. doi:10.1080/1062936X.2022.2145352.
  • M.F. Sk, S. Haridev, R. Roy, and P. Kar, Investigating potency of TMC-126 against wild-type and mutant variants of HIV-1 protease: A molecular dynamics and free energy study, SAR QSAR Environ. Res. 32 (2021), pp. 941–962. doi:10.1080/1062936X.2021.1999318.
  • N.A. Jonniya, M.F. Sk, R. Roy, and P. Kar, Discovery of potential competitive inhibitors against with-no-lysine kinase 1 for treating hypertension by virtual screening, inverse pharmacophore-based lead optimization, and molecular dynamics simulations, SAR QSAR Environ. Res. 33 (2022), pp. 63–87. doi:10.1080/1062936X.2021.2023218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.