101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discovery of dual-target natural inhibitors of meprins α and β metalloproteases for inflammation regulation: pharmacophore modelling, molecular docking, ADME prediction, and molecular dynamics studies

& ORCID Icon
Pages 899-921 | Received 01 Jul 2023, Accepted 24 Oct 2023, Published online: 13 Nov 2023

References

  • M. Shankar-Hari, G.S. Phillips, M.L. Levy, C.W. Seymour, V.X. Liu, C.S. Deutschman, D.C. Angus, G.D. Rubenfeld, and M. Singer, Developing a new definition and assessing new clinical criteria for septic shock: For the third international consensus definitions for sepsis and septic shock (sepsis-3), JAMA 315 (2016), pp. 775–787. doi:10.1001/jama.2016.0289.
  • S. Rahn and C. Becker-Pauly, Meprin and ADAM proteases as triggers of systemic inflammation in sepsis, FEBS Lett. 596 (2021), pp. 534–556. doi:10.1002/1873-3468.14225.
  • K.V. Korneev, Mouse models of sepsis and septic shock, Mol. Biol. 53 (2019), pp. 704–717. doi:10.1134/S0026893319050108.
  • J.A. Stortz, S.L. Raymond, J.C. Mira, L.L. Moldawer, A.M. Mohr, and P.A. Efron, Murine models of sepsis and trauma: Can we bridge the gap? ILAR J. 58 (2017), pp. 90–105. doi:10.1093/ilar/ilx007.
  • C. Broder and C. Becker-Pauly, The metalloproteases meprin α and meprin β: Unique enzymes in inflammation, neurodegeneration, cancer and fibrosis, Biochem. J. 450 (2013), pp. 253–264. doi:10.1042/BJ20121751.
  • M. Drag and G.S. Salvesen, Emerging principles in protease-based drug discovery, Nat. Rev. Drug Discov. 9 (2010), pp. 690–701. doi:10.1038/nrd3053.
  • E.E. Sterchi, J.R. Green, and M.J. Lentze, Nonpancreatic hydrolysis of N-benzoyl-L-tyrosyl-p-aminobenzoic acid (PABA peptide) in the rat small intestine, J. Pediatr. Gastroenterol. Nutr. 2 (1983), pp. 539–547. doi:10.1097/00005176-198302030-00024.
  • E.E. Sterchi, J.R. Green, and M.J. Lentze, Non-pancreatic hydrolysis of N-benzoyl-l-tyrosyl-p-aminobenzoic acid (PABA-peptide) in the human small intestine, Clin. Sci. 62 (1982), pp. 557–560. doi:10.1042/cs0620557.
  • R.J. Beynon, J.D. Shannon, and J.S. Bond, Purification and characterization of a metallo-endoproteinase from mouse kidney, Biochem. J. 199 (1981), pp. 591–598. doi:10.1042/bj1990591.
  • K. Barnes, J. Ingram, and A.J. Kenny, Proteins of the kidney microvillar membrane. Structural and immunochemical properties of rat endopeptidase-2 and its immunohistochemical localization in tissues of rat and mouse, Biochem. J. 264 (1989), pp. 335–346. doi:10.1042/bj2640335.
  • W. Jiang, P.M. Sadler, N.A. Jenkins, D.J. Gilbert, N.G. Copeland, and J.S. Bond, Tissue-specific expression and chromosomal localization of the alpha subunit of mouse meprin A, J. Biol. Chem. 268 (1993), pp. 10380–10385. doi:10.1016/S0021-9258(18)82212-8.
  • C.M. Gorbea, P. Marchand, W. Jiang, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, and J.S. Bond, Cloning, expression, and chromosomal localization of the mouse meprin beta subunit, J. Biol. Chem. 268 (1993), pp. 21035–21043. doi:10.1016/S0021-9258(19)36890-5.
  • D. Hahn, R. Illisson, A. Metspalu, and E.E. Sterchi, Human N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase (human meprin): Genomic structure of the alpha and beta subunits, Biochem. J. 346 (2000), pp. 83–91. doi:10.1042/bj3460083.
  • J.S. Bond and R.J. Beynon, Mammalian metalloendopeptidases, Int. J. Biochem. 17 (1985), pp. 565–574. doi:10.1016/0020-711X(85)90287-3.
  • J.S. Bond, R.J. Beynon, J.F. Reckelhoff, and C.S. David, Mep-1 gene controlling a kidney metalloendopeptidase is linked to the major histocompatibility complex in mice, Proc. Natl. Acad. Sci. USA 81 (1984), pp. 5542–5545. doi:10.1073/pnas.81.17.5542.
  • J.S. Bond and R.J. Beynon, The astacin family of metalloendopeptidases, Protein Sci. 4 (1995), pp. 1247–1261. doi:10.1002/pro.5560040701.
  • W. Stöcker and R. Zwilling, Astacin, Methods Enzymol. 248 (1995), pp. 305–325.
  • P. Saftig and K. Reiss, The “A disintegrin and metalloproteases” ADAM10 and ADAM17: Novel drug targets with therapeutic potential? Eur. J. Cell Biol. 90 (2011), pp. 527–535. doi:10.1016/j.ejcb.2010.11.005.
  • J. Scheller, A. Chalaris, C. Garbers, and S. Rose-John, ADAM17: A molecular switch to control inflammation and tissue regeneration, Trends Immunol. 32 (2011), pp. 380–387. doi:10.1016/j.it.2011.05.005.
  • K. Tan, C. Jäger, H. Körschgen, S. Geissler, D. Schlenzig, M. Buchholz, W. Stöcker, and D. Ramsbeck, Heteroaromatic inhibitors of the astacin proteinases meprin α, meprin β and ovastacin discovered by a scaffold-hopping approach, Chem. Med. Chem. 16 (2021), pp. 976–988. doi:10.1002/cmdc.202000822.
  • L.P. Norman, G.L. Matters, J.M. Crisman, and J.S. Bond, Expression of Meprins in Health and Disease, in Current Topics in Developmental Biology, Academic Press, 2003, pp. 145–166.
  • C. Almoguera, D. Shibata, K. Forrester, J. Martin, N. Arnheim, and M. Perucho, Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes, Cell 53 (1988), pp. 549–554. doi:10.1016/0092-8674(88)90571-5.
  • S. Banerjee, B. Oneda, L.M. Yap, D.P. Jewell, G.L. Matters, L.R. Fitzpatrick, F. Seibold, E.E. Sterchi, T. Ahmad, D. Lottaz, and J.S. Bond, MEP1A allele for meprin a metalloprotease is a susceptibility gene for inflammatory bowel disease, Mucosal. Immunol. 2 (2009), pp. 220–231. doi:10.1038/mi.2009.3.
  • G.P. Kaushal, R.S. Haun, C. Herzog, and S.V. Shah, Meprin a metalloproteinase and its role in acute kidney injury, Am. J. Physiol. Renal Physiol. 304 (2013), pp. F1150–8. doi:10.1152/ajprenal.00014.2013.
  • C. Becker-Pauly, M. Höwel, T. Walker, A. Vlad, K. Aufenvenne, V. Oji, D. Lottaz, E.E. Sterchi, M. Debela, V. Magdolen, H. Traupe, and W. Stöcker, The α and β subunits of the metalloprotease meprin are expressed in separate layers of human epidermis, revealing different functions in keratinocyte proliferation and differentiation, J. Invest. Dermatol. 127 (2007), pp. 1115–1125. doi:10.1038/sj.jid.5700675.
  • A. Kentsis, A. Shulman, S. Ahmed, E. Brennan, M.C. Monuteaux, Y.-H. Lee, S. Lipsett, J.A. Paulo, F. Dedeoglu, R. Fuhlbrigge, R. Bachur, G. Bradwin, M. Arditi, R.P. Sundel, J.W. Newburger, H. Steen, and S. Kim, Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease, EMBO Mol. Med. 5 (2013), pp. 210–220. doi:10.1002/emmm.201201494.
  • Z. Wang, C. Herzog, G.P. Kaushal, N. Gokden, and P.R. Mayeux, Actinonin, a meprin a inhibitor, protects the renal microcirculation during sepsis, Shock 35 (2011), pp. 141–147. doi:10.1097/SHK.0b013e3181ec39cc.
  • M.K. Holly, J.W. Dear, X. Hu, A.N. Schechter, M.T. Gladwin, S.M. Hewitt, P.S.T. Yuen, and R.A. Star, Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure, Kidney Int. 70 (2006), pp. 496–506. doi:10.1038/sj.ki.5001575.
  • C.C. Berthier, N. Lods, S.A. Joosten, C. van Kooten, D. Leppert, R.L.P. Lindberg, A. Kappeler, F. Raulf, E.E. Sterchi, D. Lottaz, and H.-P. Marti, Differential regulation of metzincins in experimental chronic renal allograft rejection: Potential markers and novel therapeutic targets, Kidney Int. 69 (2006), pp. 358–368. doi:10.1038/sj.ki.5000049.
  • C. Berthier and H.-P. Marti, Metzincins, including matrix metalloproteinases and meprin, in kidney transplantation, Swiss Med. Wkly. 137 (2007), pp. 109S–114S. doi:10.4414/smw.2006.11408.
  • N.M. Raghavendra, D. Pingili, S. Kadasi, A. Mettu, and S.V.U.M. Prasad, Dual or multi-targeting inhibitors: The next generation anticancer agents, Eur. J. Med. Chem. 143 (2018), pp. 1277–1300. doi:10.1016/j.ejmech.2017.10.021.
  • M.T.A. Ocampo, W. Chaung, D.R. Marenstein, M.K. Chan, A. Altamirano, A.K. Basu, R.J. Boorstein, R.P. Cunningham, and G.W. Teebor, Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity, Mol. Cell. Biol. 22 (2002), pp. 6111–6121. doi:10.1128/MCB.22.17.6111-6121.2002.
  • B. Papp, C. Pál, and L.D. Hurst, Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast, Nature 429 (2004), pp. 661–664. doi:10.1038/nature02636.
  • P. Csermely, V. Ágoston, and S. Pongor, The efficiency of multi-target drugs: The network approach might help drug design, Trends Pharmacol. Sci. 26 (2005), pp. 178–182. doi:10.1016/j.tips.2005.02.007.
  • D. López, M.A. Fischbach, F. Chu, R. Losick, and R. Kolter, Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis, Proc. Natl. Acad. Sci. USA 106 (2009), pp. 280–285. doi:10.1073/pnas.0810940106.
  • L. Scotti, F.J. Bezerra Mendonca, F.F. Ribeiro, J.F. Tavares, M.S. da Silva, J.M. Barbosa Filho, and M.T. Scotti, Natural product inhibitors of topoisomerases: Review and docking study, Curr. Protein Pept. Sci. 19 (2017), pp. 275–291. doi:10.2174/1389203718666170111114442.
  • M.A.F. Nasution, E.P. Toepak, A.H. Alkaff, and U.S.F. Tambunan, Flexible docking-based molecular dynamics simulation of natural product compounds and Ebola virus nucleocapsid (EBOV NP): A computational approach to discover new drug for combating Ebola, BMC Bioinform. 19 (2018), pp. 1–25. doi:10.1186/s12859-018-2387-8.
  • A.A. Alzain, R.M. Mukhtar, N. Abdelmoniem, F.A. Elbadwi, A. Hussien, W.A. Samman, S.R.M. Ibrahim, G.A. Mohamed, and A. Ashour, Computational insights into natural antischistosomal metabolites as smhdac8 inhibitors: Molecular docking, ADMET profiling, and molecular dynamics simulation, Metabolites 13 (2023), pp. 658. doi:10.3390/metabo13050658.
  • S.L. Dixon, A.M. Smondyrev, and S.N. Rao, PHASE: A novel approach to pharmacophore modeling and 3D database searching, Chem. Biol. Drug Des. 67 (2006), pp. 370–372. doi:10.1111/j.1747-0285.2006.00384.x.
  • A. Edris, M. Abdelrahman, W. Osman, A.E. Sherif, A. Ashour, E.A.E. Garelnabi, S.R.M. Ibrahim, R. Bafail, W.A. Samman, K.F. Ghazawi, G.A. Mohamed, and A.A. Alzain, Design of novel letrozole analogues targeting aromatase for breast cancer: Molecular docking, molecular dynamics, and theoretical studies on gold nanoparticles, Metabolites 13 (2023), pp. 583. doi:10.3390/metabo13050583.
  • H. Sun, Y. Li, S. Tian, L. Xu, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set, Phys. Chem. Chem. Phys. 16 (2014), pp. 16719–16729. doi:10.1039/C4CP01388C.
  • F.O. Obubeid, M.M. Eltigani, R.M. Mukhtar, R.A. Ibrahim, M.A. Alzain, F.A. Elbadawi, H. Ghaboosh, and A.A. Alzain, Dual targeting inhibitors for HIV-1 capsid and cyclophilin A: Molecular docking, molecular dynamics, and quantum mechanics, Mol. Simul. 48 (2022), pp. 1–14. doi:10.1080/08927022.2022.2097673.
  • V. Suryanarayanan and S.K. Singh, Assessment of dual inhibition property of newly discovered inhibitors against PCAF and GCN5 through in silico screening, molecular dynamics simulation and DFT approach, J. Recept. Signal Transduct. 35 (2015), pp. 370–380. doi:10.3109/10799893.2014.956756.
  • C. Coulouarn and B. Clément, Stellate cells and the development of liver cancer: Therapeutic potential of targeting the stroma, J. Hepatol. 60 (2014), pp. 1306–1309. doi:10.1016/j.jhep.2014.02.003.
  • J. Prox, P. Arnold, and C. Becker-Pauly, Meprin α and meprin β: Procollagen proteinases in health and disease, Matrix Biol. 44–46 (2015), pp. 7–13. doi:10.1016/j.matbio.2015.01.010.
  • P. Arnold, A. Otte, and C. Becker-Pauly, Meprin metalloproteases: Molecular regulation and function in inflammation and fibrosis, Biochim. Biophys. Acta Mol. Cell Res. 1864 (2017), pp. 2096–2104. doi:10.1016/j.bbamcr.2017.05.011.
  • C. Bayly-Jones, C.J. Lupton, C. Fritz, H. Venugopal, D. Ramsbeck, M. Wermann, C. Jäger, A. de Marco, S. Schilling, D. Schlenzig, and J.C. Whisstock, Helical ultrastructure of the metalloprotease meprin α in complex with a small molecule inhibitor, Nat. Commun. 131 (2022), pp. 1–14. doi:10.1038/s41467-022-33893-7.
  • A. Schütte, A. Ermund, C. Becker-Pauly, M.E.V. Johansson, A.M. Rodriguez-Pineiro, F. Bäckhed, S. Müller, D. Lottaz, J.S. Bond, and G.C. Hansson, Microbial-induced meprin β cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus, Proc. Natl. Acad. Sci. USA 111 (2014), pp. 12396–12401. doi:10.1073/pnas.1407597111.
  • C.T.N. Pham, Neutrophil serine proteases fine-tune the inflammatory response, Int. J. Biochem. Cell Biol. 40 (2008), pp. 1317–1333. doi:10.1016/j.biocel.2007.11.008.
  • V. Dive, D. Georgiadis, M. Matziari, A. Makaritis, F. Beau, P. Cuniasse, and A. Yiotakis, Phosphinic peptides as zinc metalloproteinase inhibitors, Cell. Mol. Life Sci. C 61 (2004), pp. 2010–2019. doi:10.1007/s00018-004-4050-y.
  • Y. Xu, L.T. Lai, J.L. Gabrilove, and D.A. Scheinberg, Antitumor activity of actinonin in vitro and in vivo, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 4 (1998), pp. 171–176.
  • C. Delclaux, C. Delacourt, M.P. D’Ortho, V. Boyer, C. Lafuma, and A. Harf, Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane, Am. J. Respir. Cell Mol. Biol. 14 (1996), pp. 288–295. doi:10.1165/ajrcmb.14.3.8845180.
  • F. Madoux, C. Tredup, T.P. Spicer, L. Scampavia, P.S. Chase, P.S. Hodder, G.B. Fields, C. Becker-Pauly, and D. Minond, Development of high throughput screening assays and pilot screen for inhibitors of metalloproteases meprin α and β, Biopolymers 102 (2014), pp. 396–406. doi:10.1002/bip.22527.
  • S. Banerjee, S.K. Baidya, B. Ghosh, S. Nandi, M. Mandal, T. Jha, and N. Adhikari, Quantitative structural assessments of potential meprin β inhibitors by non-linear QSAR approaches and validation by binding mode of interaction analysis, New J. Chem. 47 (2023), pp. 7051–7069. doi:10.1039/D2NJ04753E.
  • N. Adhikari, S.A. Amin, B. Ghosh, and T. Jha, Shedding light on designing potential meprin β inhibitors through ligand-based robust validated computational approaches: A proposal to chemists, J. Biomol. Struct. Dyn. 36 (2018), pp. 3003–3022. doi:10.1080/07391102.2017.1374210.
  • A. Chaudhuri, N. Hudait, and S. Sen Chakraborty, Pharmacophore modeling coupled with molecular dynamic simulation approach to identify new leads for meprin-β metalloprotease, Comput. Biol. Chem. 80 (2019), pp. 292–306. doi:10.1016/j.compbiolchem.2019.04.014.
  • Y. Dholey, A. Chaudhuri, and S. Sen Chakraborty, An integrated in silico approach to understand protein–protein interactions: Human meprin-β with fetuin-A, J. Biomol. Struct. Dyn. 38 (2020), pp. 2080–2092. doi:10.1080/07391102.2019.1626284.
  • A. Chaudhuri, S. Biswas, and S. Chakraborty, Exploring protein-protein intermolecular recognition between meprin-α and endogenous protease regulator cystatinC coupled with pharmacophore elucidation, J. Biomol. Struct. Dyn. 37 (2019), pp. 440–453. doi:10.1080/07391102.2018.1429311.
  • M. Linnert, C. Fritz, C. Jäger, D. Schlenzig, D. Ramsbeck, M. Kleinschmidt, M. Wermann, H.U. Demuth, C. Parthier, and S. Schilling, Structure and dynamics of meprin β in complex with a hydroxamate-based inhibitor, Int. J. Mol. Sci. 22 (2021), pp. 5651. doi:10.3390/ijms22115651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.