145
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational explorations of the interaction between laccase and bisphenol A: influence of surfactant and different organic solvents

ORCID Icon, , , , &
Pages 963-981 | Received 08 Aug 2023, Accepted 30 Oct 2023, Published online: 27 Nov 2023

References

  • J. Shen, Q. Kang, Y. Mao, M. Yuan, F. Le, X. Yang, X. Xu, and F. Jin, Urinary bisphenol A concentration is correlated with poorer oocyte retrieval and embryo implantation outcomes in patients with tubal factor infertility undergoing in vitro fertilisation, Ecotox. Environ. Safe. 187 (2020), pp. 109816.
  • E. Fasano and T. Cirillo, Plasticizers and bisphenol as food contaminants: Sources and human risk, Curr. Anal. Chem. 14 (2018), pp. 296–305. doi:10.2174/1573411013666170822153906.
  • A.M. Calafat and H.M. Koch, BPA and risk assessment, Lancet Diabetes Endocrinol. 8 (2020), pp. 269–270. doi:10.1016/S2213-8587(20)30070-X.
  • C. Xiao, L. Wang, Q. Zhou, and X. Huang, Hazards of bisphenol A (BPA) exposure: A systematic review of plant toxicology studies, J. Hazard. Mater. 384 (2020), pp. 121488. doi:10.1016/j.jhazmat.2019.121488.
  • L.D. Toni, M.D.R. Ponce, G.C. Petre, K. Rtibl, A. Di Nisio, and C. Foresta, Bisphenols and male reproductive health: From toxicological models to therapeutic hypotheses, Front. Endocrinol. 11 (2020), pp. 301. doi:10.3389/fendo.2020.00301.
  • F. Liang, X. Huo, W. Wang, Y. Li, J. Zhang, Y. Feng, and Y. Wang, Association of bisphenol A or bisphenol S exposure with oxidative stress and immune disturbance among unexplained recurrent spontaneous abortion women, Chemosphere 257 (2020), pp. 127035. doi:10.1016/j.chemosphere.2020.127035.
  • J.M. Reed, P. Spinelli, S. Falcone, M. He, C.M. Goeke, and M. Susiarjo, Evaluating the effects of BPA and TBBPA exposure on pregnancy loss and maternal-fetal immune cells in mice, Environ. Health Perspect. 130 (2022), pp. 037010. doi:10.1289/EHP10640.
  • I. Cimmino, F. Fiory, G. Perruolo, C. Miele, F. Beguinot, P. Formisano, and F. Oriente, Potential mechanisms of bisphenol A (BPA) contributing to human disease, Int. J. Mol. Sci. 21 (2020), pp. 5761. doi:10.3390/ijms21165761.
  • I. Ďurovcová, S. Kyzek, J. Fabová, J. Makuková, E. Gálová, and A. Ševčovičová, Genotoxic potential of bisphenol A: A review, Environ. Pollut. 306 (2022), pp. 119346. doi:10.1016/j.envpol.2022.119346.
  • E.B. Simsek, B. Kilic, M. Asgin, and A. Akan, Graphene oxide based heterojunction TiO2-ZnO catalysts with outstanding photocatalytic performance for bisphenol-A, ibuprofen and flurbiprofen, J. Ind. Eng. Chem. 59 (2018), pp. 115–126. doi:10.1016/j.jiec.2017.10.014.
  • A. Garg, T. Singhania, A. Singh, S. Sharma, S. Rani, A. Neogy, S.R. Yadav, V.K. Sanga, and N. Garg, Photocatalytic degradation of bisphenol-A using N, Co codoped TiO2 catalyst under solar light, Sci. Rep. 9 (2019), pp. 765. doi:10.1038/s41598-018-38358-w.
  • C.Y. Wang, Q. Zeng, L.X. Wang, X. Fang, and G.C. Zhu, Visible-light-driven ag-doped BiOBr nanoplates with an enhanced photocatalytic performance for the degradation of bisphenol A, Nanomaterials 12 (2022), pp. 1909. doi:10.3390/nano12111909.
  • L.A. Goulart, S.A. Alves, and L.H. Mascaro, Photoelectrochemical degradation of bisphenol A using Cu doped WO3 electrodes, J. Electroanal. Chem. 839 (2019), pp. 123–133. doi:10.1016/j.jelechem.2019.03.027.
  • M.D. Simić, B.G. Savić, M.R. Ognjanović, D.M. Stanković, D.J. Relić, D.D. Aćimović, and T.P. Brdarić, Degradation of bisphenol A on SnO2-MWCNT electrode using electrochemical oxidation, J. Water Process Eng. 51 (2023), pp. 103416. doi:10.1016/j.jwpe.2022.103416.
  • C.G. Moreira, M.H. Moreira, V.M.O.C. Silva, H.G. Santos, D.M. Bila, and F.V. Fonseca, Treatment of bisphenol A (BPA) in water using UV/H2O2 and reverse osmosis (RO) membranes: Assessment of estrogenic activity and membrane adsorption, Water Sci. Technol. 80 (2019), pp. 2169–2178. doi:10.2166/wst.2020.024.
  • H. Zhang, J. Luo, and Y. Wan, Regenerable temperature-responsive biocatalytic nanofiltration membrane for organic micropollutants removal, Iscience (2022), pp. 1–21. doi:10.1016/j.isci.2021.103671.
  • Y. He, Y. Huang, Q. Wang, and X. Pan, Controlling waste by waste: A modified landfill leachate coagulation sludge activated peroxymonosulfate process achieves complete BPA degradation, Environ. Technol. 44 (2021), pp. 1–8. doi:10.1080/09593330.2021.1992511.
  • J. Bai, Y. Li, B. Song, and Q. Wang, Activation of peroxymonosulfate by modified coagulation sludge for bisphenol A degradation, Environ. Sci. Pollut. Res. 29 (2022), pp. 78832–78847. doi:10.1007/s11356-022-21419-z.
  • T. Garoma, S.A. Matsumoto, Y. Wu, and R. Klinger, Removal of bisphenol A and its reaction-intermediates from aqueous solution by ozonation, Ozone 32 (2010), pp. 338–343. doi:10.1080/01919512.2010.508484.
  • M. Bilal, T. Rasheed, F. Nabeel, H.M.N. Iqbal, and Y. Zhao, Hazardous contaminants in the environment and their laccase-assisted degradation-a review, J. Environ. Manage. 234 (2019), pp. 253–264. doi:10.1016/j.jenvman.2019.01.001.
  • A.M. Elsayed, M. Mahmoud, G.S.A. Abdel Karim, M. Abdelrao, and A.M. Othman, Purification and biochemical characterization of two laccase isoenzymes isolated from Trichoderma harzianum S7113 and its application for bisphenol A degradation, Microb. Cell Fact. 22 (2023), pp. 1–12. doi:10.1186/s12934-022-02011-z.
  • W. Zhang, K. Yin, and L. Chen, Bacteria-mediated bisphenol A degradation, Appl. Microbiol. Biot. 97 (2013), pp. 5681–5689. doi:10.1007/s00253-013-4949-z.
  • J. Trivedi and U. Chhaya, Bioremediation of bisphenol A found in industrial wastewater using Trametes versicolor (TV) laccase nanoemulsion-based bead organogel in packed bed reactor, Water Environ. Res. 94 (2022), pp. e10786. doi:10.1002/wer.10786.
  • K.H. Nguyen, V.D. Dao, T.T.H. Ngo, T.H. Nguyen, Q.T. Nguyen, and T.T. Le, Removal of bisphenol A using laccase-catalyzed electrooxidation in the presence of humic acid, Clean-Soil Air Water 50 (2022), pp. 2100368. doi:10.1002/clen.202100368.
  • S. Li, Q. Liu, J. Liu, K. Sun, W. Yang, Y. Si, Y. Li, and Y. Gao, Inhibition mechanisms of Fe2+/Fe3+ and Mn2+ on fungal laccase-enabled bisphenol A polyreaction, Chemosphere 307 (2022), pp. 135685. doi:10.1016/j.chemosphere.2022.135685.
  • R. Mehra, J. Muschiol, A.S. Meyer, and K.P. Kepp, A structural-chemical explanation of fungal laccase activity, Sci. Rep. 8 (2018), pp. 1–16. doi:10.1038/s41598-018-35633-8.
  • A.I. Canas and S. Camarero, Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes, Biotechnol. Adv. 28 (2010), pp. 694–705. doi:10.1016/j.biotechadv.2010.05.002.
  • T. Chairin, T. Nitheranont, A. Watanabe, Y. Asada, C. Khanongnuch, and S. Lumyong, Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from White-Rot fungus Trametes polyzona, Appl. Biochem. Biotechnol. 169 (2013), pp. 539–545. doi:10.1007/s12010-012-9990-3.
  • A. Sivan, New perspectives in plastic biodegradation, Curr. Opin. Biot. 22 (2011), pp. 422–426. doi:10.1016/j.copbio.2011.01.013.
  • W.T. Huang, R. Tai, R.S. Hseu, and C.T. Huang, Overexpression and characterization of a thermostable, pH-stable and organic solvent-tolerant Ganoderma fornicatum laccase in Pichia pastoris, Process Biochem. 46 (2011), pp. 1469–1474. doi:10.1016/j.procbio.2011.03.020.
  • M. Alcalde, M. Alcalde, T. Bulter, M. Zumárraga, H. García-Arellano, M. Mencía, F.J. Plou, and A. Ballesteros, Screening mutant libraries of fungal laccases in the presence of organic solvents, J. Biomol. Screen. 10 (2005), pp. 624–631. doi:10.1177/1087057105277058.
  • B. Rasekh, K. Khajeh, B. Ranjbar, N. Mollania, B. Almasinia, and H. Tirandaz, Protein engineering of laccase to enhance its activity and stability in the presence of organic solvents, Eng. Life Sci. 14 (2014), pp. 442–448. doi:10.1002/elsc.201300042.
  • R. Das, G. Li, B. Mai, and T. An, Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation, Sci. Total Environ. 640 (2018), pp. 798–806. doi:10.1016/j.scitotenv.2018.05.379.
  • K. Piontek, M. Antorini, and T. Choinowski, Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers, J. Biol. Chem. 277 (2002), pp. 37663–37669. doi:10.1074/jbc.M204571200.
  • M.H. Wu, C.C. Lee, A.S. Hsiao, S.M. Yu, A.H.J. Wang, and T.H.D. Ho, Kinetic analysis and structural studies of a high‐efficiency laccase from Cerrena sp. RSD 1, FEBS Open Bio. 8 (2018), pp. 1230–1246. doi:10.1002/2211-5463.12459.
  • J. Rodakiewicz-Nowak and A. Jarosz-Wilkołazka, Catalytic activity of Cerrena unicolor laccase in aqueous solutions of water-miscible organic solvents-experimental and numerical description, J. Mol. Catal. B-Enzym. 44 (2007), pp. 53–59. doi:10.1016/j.molcatb.2006.08.005.
  • J. Zakzeski, A.L. Jongerius, P.C.A. Bruijnincx, and B.M. Weckhuysen, Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen, ChemSuschem 5 (2012), pp. 1602–1609. doi:10.1002/cssc.201100699.
  • J. Tominaga, J. Michizoe, N. Kamiya, H. Ichinose, T. Maruyama, and M. Goto, Factors affecting the oxidative activity of laccase towards biphenyl derivatives in homogeneous aqueous-organic systems, J. Biosci. Bioeng. 98 (2004), pp. 14–19. doi:10.1016/S1389-1723(04)70236-4.
  • M.H. Wu, M.C. Lin, C.C. Lee, S.M. Yu, A.H.J. Wang, and T.H.D. Ho, Enhancement of laccase activity by pre-incubation with organic solvents, Sci. Rep. 9 (2019), pp. 9754. doi:10.1038/s41598-019-45118-x.
  • Y. Liu, Z. Liu, G. Zeng, M. Chen, Y. Jiang, B. Shao, and Y. Liu, Effect of surfactants on the interaction of phenol with laccase: Molecular docking and molecular dynamics simulation studies, J. Hazard. Mater. 357 (2018), pp. 10–18. doi:10.1016/j.jhazmat.2018.05.042.
  • L. Chen, X. Huang, Y.F. Li, B. Zhao, M. Liang, and R.G. Wang, Structural and energetic basis of interaction between human estrogen-related receptor γ and environmental endocrine disruptors from multiple molecular dynamics simulations and free energy predictions, J. Hazard. Mater. 443 (2023), pp. 130174. doi:10.1016/j.jhazmat.2022.130174.
  • P. Bhatt, K. Bhatt, W.J. Chen, Y. Huang, Y. Xiao, S. Wu, and S. Chen, Bioremediation potential of laccase for catalysis of glyphosate, isoproturon, lignin, and parathion: Molecular docking, dynamics, and simulation, J. Hazard. Mater. 443 (2023), pp. 130319. doi:10.1016/j.jhazmat.2022.130319.
  • R. Dennington, T.A. Keith, and J.M. Millam, GaussView, Version 5.0, Semichem Inc., Shawnee Mission, KS, 2016; software available at http://gaussian.com/citation/.
  • D.S. Goodsell and A.J. Olson, AutoDock; software available at https://autodock.scripps.edu/.
  • A.K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P.C. Nair, C. Oostenbrink, and A.E. Mark, An automated force field topology builder (ATB) and repository: Version 1.0, J. Chem. Theory Comput. 7 (2011), pp. 4026–4037. doi:10.1021/ct200196m.
  • H.J.C. Berendsen, J.P.M. Postma, W.F.V. Gunsteren, and J. Hermans, Interaction models for water in relation to protein hydration. Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, 1981, pp. 331–342.
  • G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126 (2007), pp. 1–8. doi:10.1063/1.2408420.
  • H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984), pp. 3684–3690. doi:10.1063/1.448118.
  • S. Pronk, S. Páll, and R. Schulz, GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics 29 (2013), pp. 845–854. doi:10.1093/bioinformatics/btt055.
  • D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H.J.C. Berendsen, GROMACS: Fast, flexible, and free, J. Comput. Chem. 26 (2005), pp. 1701–1718. doi:10.1002/jcc.20291.
  • N. Schmid, A.P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A.E. Mark, and W.F. van Gunsteren, Definition and testing of the GROMOS force-field versions 54A7 and 54B7, Eur. Biophys. J. 40 (2011), pp. 843–856. doi:10.1007/s00249-011-0700-9.
  • T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N. log (N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092. doi:10.1063/1.464397.
  • R. Kumari and R. Kumar, G_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations, J. Chem. Inf. Model. 54 (2014), pp. 1951–1962. doi:10.1021/ci500020m.
  • N.A. Baker, D. Sept, S. Joseph, M.J. Holst, and J.A. McCammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proc. Natl. Acad. Sci. USA 98 (2001), pp. 10037–10041. doi:10.1073/pnas.181342398.
  • J.M. Swanson, R.H. Henchman, and J.A. McCammon, Revisiting free energy calculations: A theoretical connection to MM/PBSA and direct calculation of the association free energy, Biophys. J. 86 (2004), pp. 67–74. doi:10.1016/S0006-3495(04)74084-9.
  • T. Hou, J. Wang, Y. Wang, and W. Li, Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Inf. Model. 51 (2011), pp. 69–82. doi:10.1021/ci100275a.
  • D. Sitkoff, K.A. Sharp, and B. Honig, Accurate calculation of hydration free energies using macroscopic solvent models, J. Phys. Chem. 98 (1994), pp. 1978–1988. doi:10.1021/j100058a043.
  • H. Sun, Y. Li, M. Shen, S. Tian, L. Xu, P. Pan, Y. Guan, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring, Phys. Chem. Chem. Phys. 16 (2014), pp. 22035–22045. doi:10.1039/C4CP03179B.
  • Y.F. Li, L. Chen, Y. Sun, R.G. Wang, B. Zhao, and T. Jing, Exploring the effect of surfactants on the interaction between laccase and bisphenol A by molecular docking, molecular dynamics, and energy calculation, J. Mol. Liq. 382 (2023), pp. 121928. doi:10.1016/j.molliq.2023.121928.
  • J. Bergfreund, S. Siegenthaler, V. Lutz-Bueno, P. Bertsch, and P. Fischer, Surfactant adsorption to different fluid interfaces, Langmuir 37 (2021), pp. 6722–6727. doi:10.1021/acs.langmuir.1c00668.
  • C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, John Wiley & Sons, Washington, 2011.
  • A.L. Serdakowski and J.S. Dordick, Enzyme activation for organic solvents made easy, Trends Biot. 26 (2008), pp. 48–54. doi:10.1016/j.tibtech.2007.10.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.