256
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico insights into design of novel VEGFR-2 inhibitors: SMILES-based QSAR modelling, and docking studies on substituted benzo-fused heteronuclear derivatives

ORCID Icon, , &
Pages 265-284 | Received 05 Feb 2024, Accepted 14 Mar 2024, Published online: 09 Apr 2024

References

  • H.A. Mahdy, M.K. Ibrahim, A.M. Metwaly, A. Belal, A.B.M. Mehany, K.M.A. El-Gamal, A. El-Sharkawy, M.A. Elhendawy, M.M. Radwan, M.A. Elsohly, and I.H. Eissa, Design, synthesis, molecular modeling, in vivo studies and anticancer evaluation of quinazolin-4 (3H)-one derivatives as potential VEGFR-2 inhibitors and apoptosis inducer, Bioorg. Chem. 94 (2020), pp. 103422. doi:10.1016/j.bioorg.2019.103422.
  • M. Shibuya, Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies, Genes Cancer 2 (2011), pp. 1097–1105. doi:10.1177/1947601911423031.
  • X. Wang, A.M. Bove, G. Simone, and B. Ma, Molecular bases of VEGFR-2-mediated physiological function and pathological role, Front Cell Dev. Biol. 8 (2020). doi:10.3389/fcell.2020.599281.
  • S. Banerjee, S. Kejriwal, B. Ghosh, G. Lanka, T. Jha, and N. Adhikari, Fragment-based investigation of thiourea derivatives as VEGFR-2 inhibitors: A cross-validated approach of ligand-based and structure-based molecular modelling studies, J. Biomol. Struct. Dyn. 42 (2024), pp. 1047–1063. doi:10.1080/07391102.2023.2198039.
  • T.A. Farghaly, W.A. Al-Hasani, and H.G. Abdulwahab, An updated patent review of VEGFR-2 inhibitors (2017-present), Expert Opin. Ther. Pat. 31 (2021), pp. 989–1007. doi:10.1080/13543776.2021.1935872.
  • S. Vishakha, K. Kajal, S. Mondal, S.K. Wahan, B.D. Kurmi, G.D. Gupta, and P. Patel, Novel VEGFR-2 kinase inhibitors as anticancer agents: A review focusing on SAR and molecular docking studies (2016–2021), Chem. Biodiv. 20 (2023), pp. e202200847. doi:10.1002/cbdv.202200847.
  • X. Yuan, Q. Yang, T. Liu, K. Li, Y. Liu, C. Zhu, Z. Zhang, L. Li, C. Zhang, M. Xie, J. Lin, J. Zhang, and Y. Jin, Design, synthesis and in vitro evaluation of 6-amide-2-aryl benzoxazole/benzimidazole derivatives against tumor cells by inhibiting VEGFR-2 Kinase, Eur. J. Med. Chem. 179 (2019), pp. 147–165. doi:10.1016/j.ejmech.2019.06.054.
  • A.A. El-Helby, H. Sakr, I.H. Eissa, A.A. Al-Karmalawy, and K. El-Adl, Benzoxazole/benzothiazole‐derived VEGFR‐2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations, Arch. Pharm. 352 (2019), pp. 1900178. doi:10.1002/ardp.201900178.
  • C. Porta, P. Giglione, W. Liguigli, and C. Paglino, Dovitinib (CHIR258, TKI258): Structure, development and preclinical and clinical activity, Future Oncol. 11 (2015), pp. 39–50. doi:10.2217/fon.14.208.
  • Y. Jiang, W. Yang, F. Wang, and B. Zhou, In silico studies of a novel scaffold of benzoxazole derivatives as anticancer agents by 3D-QSAR, molecular docking and molecular dynamics simulations, R. Soc. Chem. 13 (2023), pp. 14808–14824. doi:10.1039/D3RA01316B.
  • J.B. Tong, Y. Feng, D. Luo, and T.H. Wang, 6‑amide‑2‑aryl benzoxazole/benzimidazole derivatives as VEFGR‑2 inhibitors in two‑and three‑dimensional QSAR studies: Topomer CoMFA and HQSAR, Chem. Pap. 75 (2021), pp. 3551–3562. doi:10.1007/s11696-021-01588-w.
  • E.A.A. El-Meguid, A.M. Naglah, G.O. Moustafa, H.M. Award, and A.M. El Kerdawy, Novel benzothiazole-based dual VEGFR-2/EGFR inhibitors targeting breast and liver cancers: Synthesis, cytotoxic activity, QSAR and molecular docking studies, Bioor. Med. Chem. Lett. 58 (2022), pp. 128529. doi:10.1016/j.bmcl.2022.128529.
  • A.A. Toropov and A.P. Toropova, The Monte Carlo method as a tool to build up predictive QSPR/QSAR, Curr. Comput. Aided Drug Des. 15 (2019), pp. 197–206. doi:10.2174/1573409915666190328123112.
  • A.P. Toropova and A.A. Toropov, CORAL software: Prediction of carcinogenicity of drugs by means of the Monte Carlo method, Eur. J. Pharm. Sci. 52 (2014), pp. 21–25. doi:10.1016/j.ejps.2013.10.005.
  • A.A. Toropov, I. Raska Jr, A.P. Toropova, M. Raskova, A.M. Veselinovic, and J.B. Veselinovic, The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models, Sci. Total Environ. 659 (2019), pp. 1387–1394. doi:10.1016/j.scitotenv.2018.12.439.
  • M. Hasegawa, N. Nishigaki, Y. Washio, K. Kano, P.A. Harris, H. Sato, I. Mori, R.I. West, M. Shibahara, H. Toyoda, L. Wang, R.T. Nolte, J.M. Veal, and M. Cheung, Discovery of novel benzimidazoles as potent inhibitors of TIE-2 and VEGFR-2 tyrosine kinase receptors, J. Med. Chem. 50 (2007), pp. 4453–4470. doi:10.1021/jm0611051.
  • L. Shi, T. Wu, Z. Wang, J. Xue, and Y. Xu, Discovery of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinolin-4-amine derivatives as novel VEGFR-2 kinase inhibitors, Eur. J. Med. Chem. 84 (2014), pp. 698–707. doi:10.1016/j.ejmech.2014.07.071.
  • A.S. Mostafa, R.M. Gomaa, and M.A. Elmorsy, Design and synthesis of 2-phenyl benzimidazole derivatives as VEGFR-2 inhibitors with anti-breast cancer activity, Chem. Biol. Drug. Des. 93 (2019), pp. 454–463. doi:10.1111/cbdd.13433.
  • M.A. Abdullaziz, H.T. Abdel-Mohsen, A.M. El Kerdawy, F.A.F. Ragab, M.M. Ali, S.M. Abu-Bakr, A.S. Girgis, and H.I. El Diwani, Design, synthesis, molecular docking and cytotoxic evaluation of novel 2-furybenzimidazoles as VEGFR-2 inhibitors, Eur. J. Med. Chem. 136 (2017), pp. 315–329. doi:10.1016/j.ejmech.2017.04.068.
  • V.G. Reddy, T.S. Reddy, C. Jadala, M.S. Reddy, F. Sultana, R. Akunuri, S.K. Bhargava, D. Wlodkowic, P. Srihari, and A. Kamal, Pyrazolo-benzothiazole hybrids: synthesis, anticancer properties and evaluation of antiangiogenic activity using in vitro VEGFR-2 kinase and in vivo transgenic zebrafish model, Eur. J. Med. Chem. 182 (2019), pp. 111609. doi:10.1016/j.ejmech.2019.111609.
  • M. Zi, F. Liu, D. Wu, K. Li, D. Zhang, C. Zhu, Z. Zhang, L. Li, C. Zhang, M. Xie, J. Lin, J. Zhang, and Y. Jin, Discovery of 6-arylurea-2-arylbenzoxazole and 6-arylurea-2-arylbenzimidazole derivatives as angiogenesis inhibitors: Design, synthesis and in vitro biological evaluation, Chem. Med. Chem. 14 (2019), pp. 1291–1302. doi:10.1002/cmdc.201900216.
  • H.T. Abdel‐Mohsen, E.A.A. El‐Meguid, A.M. El Kerdawy, A.E.E. Mahmoud, and M.M. Ali, Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multi angiokinase inhibitors targeting breast cancer, Arch. Pharm. 353 (2020), pp. 1900340. doi:10.1002/ardp.201900340.
  • A.A. El-Helby, H. Sakr, I.H. Eissa, H. Abulkhair, A.A. Al-Karmalawy, and K. El-Adl, Design, synthesis, molecular docking, and anticancer activity of benzoxazole derivatives as VEGFR‐2 inhibitors, Arch. Pharm. 352 (2019), pp. 1900113. doi:10.1002/ardp.201900113.
  • M.S. Taghour, H.A. Mahdy, M.H. Gomaa, A. Aglan, M.G. Eldeib, A. Elwan, M.A. Dahab, E.B. Elkaeed, A.A. Alsfouk, M.M. Khalifa, I.H. Eissa, and H. Elkady, Benzoxazole derivatives as new VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and antiproliferative evaluation, J. Enz. Inhib. Med. Chem. 37 (2022), pp. 2063–2077. doi:10.1080/14756366.2022.2103552.
  • I.H. Eissa, R. El-Haggar, M.A. Dahab, M.F. Ahmed, H.A. Mahdy, R.I. Alsantali, A. Elwan, N. Masurier, and S.S. Fatahala, Design, synthesis, molecular modelling and biological evaluation of novel benzoxazole-benzamide conjugates via a 2-thioacetamido linker as potential anti-proliferative agents, VEGFR-2 inhibitors and apoptotic inducers, J. Enz. Inhib. Med. Chem. 37 (2022), pp. 1587–1599. doi:10.1080/14756366.2022.2081844.
  • M.M. Al-Sanea, A. Hamdi, A.A.B. Mohamed, H.W. El-Shafey, M. Moustafa, A.A. Elgazar, W.M. Eldehna, H.U. Rahman, D.G.T. Parambi, R.M. Elbargisy, S. Selim, S.N.A. Bukhari, O.M. Hendawy, and S.S. Tawfik, New benzothiazole hybrids as potential VEGFR-2 inhibitors: Design, synthesis, anticancer evaluation, and in silico study, J. Enzy. Inhib. Med. Chem. 38 (2023), pp. 2166036. doi:10.1080/14756366.2023.2166036.
  • N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, and G.R. Hutchison, Open babel: An open chemical toolbox, J. Cheminform. 3 (2011), pp. 1–14. doi:10.1186/1758-2946-3-33.
  • K. Bagri, A. Kapoor, P. Kumar, and A. Kumar, Hybrid descriptors–conjoint indices: A case study on imidazole-thiourea containing glutaminyl cyclase inhibitors for design of novel anti-Alzheimer’s candidates, SAR QSAR Environ. Res. 34 (2023), pp. 361–381. doi:10.1080/1062936X.2023.2212175.
  • A.A. Toropov, A.P. Toropova, S.E. Martyanov, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski, Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines, Chemom. Intell. Lab. Sys. 109 (2011), pp. 94–100. doi:10.1016/j.chemolab.2011.07.008.
  • S. Ahmadi, S. Lotfi, S. Afshari, P. Kumar, and E. Ghasemi, CORAL: Monte Carlo based global QSAR modelling of bruton tyrosine kinase inhibitors using hybrid descriptors, SAR QSAR Environ. Res. 32 (2021), pp. 1013–1031. doi:10.1080/1062936X.2021.2003429.
  • D. Sokolovic, V. Stankovic, D. Toskic, L. Lilic, G. Rankovic, J. Rankovic, G. Nedin-Rankovic, and A.M. Veselinovic, Monte Carlo-based QSAR Modeling of dimeric pyridinium compounds and drug design of new potent acetylcholine esterase inhibitors for potential therapy of myasthenia gravis, Struct. Chem. 27 (2016), pp. 1511–1519. doi:10.1007/s11224-016-0776-z.
  • D. Weininger, SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inj. Comput. Sci. 28 (1988), pp. 31–36. doi:10.1021/ci00057a005.
  • A.A. Toropov, I. Gutmanb, and B. Furtula, Graph of atomic orbitals and the molecular structure-descriptors based on it, J. Serb. Chem. Soc. 70 (2005), pp. 669–674. doi:10.2298/JSC0504669T.
  • A.P. Toropova, A.A. Toropov, J.B. Veselinovi, F.N. Miljkovic, and A.M. Veselinovi, QSAR models for HEPT derivates as NNRTI inhibitors based on Monte Carlo method, Eur. J. Med. Chem. 77 (2014), pp. 298–305. doi:10.1016/j.ejmech.2014.03.013.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701. doi:10.1002/qsar.200610151.
  • S. Shayanfar and A. Shayanfar, Comparison of various methods for validity evaluation of QSAR models, BMC Chem. 16 (2022), pp. 63. doi:10.1186/s13065-022-00856-4.
  • A. Golbraikh and A. Tropsha, Beware of q2! J. Mol. Graph. Model 20 (2002), pp. 269–276. doi:10.1016/S1093-3263(01)00123-1.
  • A. Shayanfar and S. Shayanfar, Is regression through origin useful in external validation of QSAR models? Eur. J. Pharm. Sci. 59 (2014), pp. 31–35. doi:10.1016/j.ejps.2014.03.007.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring Rm2 metrics for validation of qspr models, Chemom. Intell. Lab. Syst. 107 (2011), pp. 194–205. doi:10.1016/j.chemolab.2011.03.011.
  • P.P. Roy and K. Roy, QSAR studies of CYP2D6 inhibitor aryloxypropanolamines using 2d and 3D descriptors, Chem. Biol. Drug. Des. 73 (2009), pp. 442–455. doi:10.1111/j.1747-0285.2009.00791.x.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate i? comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi:10.1021/ci200211n.
  • P.K. Ojha and K. Roy, Comparative QSARs for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection, Chemom. Intell. Lab. Syst. 109 (2011), pp. 146–161. doi:10.1016/j.chemolab.2011.08.007.
  • T. Hanser, C. Barber, J.F. Marchaland, and S. Werner, Applicability domain: Towards a more formal definition, SAR QSAR Environ. Res. 27 (2016), pp. 865–881. doi:10.1080/1062936X.2016.1250229.
  • O. Trott and A.J. Olson, Autodock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–61. doi:10.1002/jcc.21334.
  • M. McTigue, B.W. Murray, J.H. Chen, Y.L. Deng, J. Solowiej, and R.S. Kania, Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors, Proc. Natl. Acad. Sci. USA 45 (2012), pp. 18281–18289. doi:10.1073/pnas.1207759109.
  • K. Stierand and M. Rarey, Drawing the PDB: Protein-ligand complexes in two dimensions, ACS Med. Chem. Lett. 1 (2010), pp. 540–545. doi:10.1021/ml100164p.
  • Schrödinger Release 2022−1. Desmond Molecular Dynamics System; D. E. Shaw Research, Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.