86
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring different classification-dependent QSAR modelling strategies for HDAC3 inhibitors in search of meaningful structural contributors

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 367-389 | Received 10 Mar 2024, Accepted 28 Apr 2024, Published online: 17 May 2024

References

  • M. Mottamal, S. Zheng, T.L. Huang, and G. Wang, Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents, Molecules 20 (2015), pp. 3898–3941. doi:10.3390/molecules20033898.
  • U. Norinder, J.J. Naveja, E. López-López, D. Mucs, and J.L. Medina-Franco, Conformal prediction of HDAC inhibitors, SAR QSAR Environ. Res. 30 (2019), pp. 265–277. doi:10.1080/1062936X.2019.1591503.
  • N. Kumbhar, S. Nimal, S. Barale, S. Kamble, R. Bavi, K. Sonawane, and R. Gachhe, Identification of novel leads as potent inhibitors of HDAC3 using ligand-based pharmacophore modeling and MD simulation, Sci. Rep. 12 (2022), pp. 1712. doi:10.1038/s41598-022-05698-7.
  • P. Llinàs-Arias and M. Esteller, Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: An update, Open Biol. 7 (2017), pp. 170152. doi:10.1098/rsob.170152.
  • N. Sodum, G. Kumar, S.L. Kumar, and C.M. Rao, Epigenetics in NAFLD/NASH: Targets and therapy, Pharmacol. Res. 167 (2021), pp. 105484. doi:10.1016/j.phrs.2021.105484.
  • I.F. Harison and D.T. Dexter, Epigenetic targeting of histone deacetylase: Therapeutic potential in Parkinson’s disease? Pharmacol. Ther. 140 (2013), pp. 34–52. doi:10.1016/j.pharmthera.2013.05.010.
  • S. Banerjee, N. Adhikari, S.A. Amin, and T. Jha, Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview, Eur. J. Med. Chem. 164 (2019), pp. 214–240. doi:10.1016/j.ejmech.2018.12.039.
  • C. Zhao, H. Dong, Q. Xu, and Y. Zhang, Histone deacetylase (HDAC) inhibitors in cancer: A patent review (2017-present), Expert Opin. Ther. Pat. 30 (2020), pp. 263–274. doi:10.1080/13543776.2020.1725470.
  • N. Adhikari, T. Jha, and B. Ghosh, Dissecting histone deacetylase 3 in multiple disease conditions: Selective inhibition as a promising therapeutic strategy, J. Med. Chem. 64 (2021), pp. 8827–8869. doi:10.1021/acs.jmedchem.0c01676.
  • J. Minami, R. Suzuki, R. Mazitschek, G. Gorgun, B. Ghosh, D. Cirstea, and K.C. Anderson, Histone deacetylase 3 as a novel therapeutic target in multiple myeloma, Leukemia 28 (2014), pp. 680–689. doi:10.1038/leu.2013.231.
  • P. Karagianni and J. Wong, HDAC3: Taking the SMRT-N-CoRrect road to repression, Oncogene 26 (2007), pp. 5439–5449. doi:10.1038/sj.onc.1210612.
  • P.A. Marks, R.A. Rifkind, V.M. Richon, R. Breslow, T. Miller, and W.K. Kelly, Histone deacetylases and cancer: Causes and therapies, Nat. Rev. Cancer 1 (2001), pp. 194–202. doi:10.1038/35106079.
  • A.J. Wilson, D.S. Byun, N. Popova, L.B. Murray, K. L’italian, Y. Sowa, and J.M. Mariadason, Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer, J. Biol. Chem. 281 (2006), pp. 13548–13558. doi:10.1074/jbc.M510023200.
  • H. Wang, Y.C. Liu, Y.C. Zhu, F. Yan, M.Z. Wang, X.S. Chen, and L.P. Dou, Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway, J. Exp. Clin. Cancer Res. 39 (2020), pp. 278. doi:10.1186/s13046-020-01792-8.
  • D.Q. Chen, C. Yu, X.F. Zhang, Z.F. Liu, R. Wang, M. Jiang, and J.F. Feng, HDAC3-mediated silencing of miR-451 decreases chemosensitivity of patients with metastatic castration-resistant prostate cancer by targeting NEDD9, Ther. Adv. Med. Oncol. 10 (2018), doi:10.1177/1758835918783132.
  • J. Li, M. Hu, N. Liu, H. Li, Z. Yu, Q. Yan, and R. Chen, HDAC3 deteriorates colorectal cancer progression via microRNA-296-3p/TGIF1/TGFβ axis, J. Exp. Clin. Cancer Res. 39 (2020), pp. 248. doi:10.1186/s13046-020-01720-w.
  • N. Adhikari, S.A. Amin, P. Trivedi, T. Jha, and B. Ghosh, HDAC3 is a potential validated target for cancer: An overview on the benzamide-based selective HDAC3 inhibitors through comparative SAR/QSAR/QAAR approaches, Eur. J. Med. Chem. 157 (2018), pp. 1127–1142. doi:10.1016/j.ejmech.2018.08.081.
  • S.A. Amin, N. Adhikari, S. Kotagiri, T. Jha, and B. Ghosh, Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides, Eur. J. Med. Chem. 166 (2019), pp. 369–380. doi:10.1016/j.ejmech.2019.01.077.
  • J. Xia, H. Hu, W. Xue, X.S. Wang, and S. Wu, The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay, J. Enzyme Inhib. Med. Chem. 33 (2018), pp. 525–535. doi:10.1080/14756366.2018.1437156.
  • S. Li, Y. Ding, M. Chen, Y. Chen, J. Kirchmair, Z. Zhu, S. Wu, and J. Xia, HDAC3i-finder: A machine learning-based computational tool to screen for HDAC3 inhibitors, Mol. Inform. 40 (2021), pp. e2000105. doi:10.1002/minf.202000105.
  • G. Lanka, D. Begum, S. Banerjee, N. Adhikari, P. Yoggeswari, and B. Ghosh, Pharmacophore-based virtual screening, 3D QSAR, docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors, Comput. Biol. Med. 166 (2023), pp. 107481. doi:10.1016/j.compbiomed.2023.107481.
  • P. Patel, S.K. Shrivastava, P. Sharma, B.D. Kurmi, E. Shirbhate, and H. Rajak, Hydroxamic acid derivatives as selective HDAC3 inhibitors: Computer-aided drug design strategies, J. Biomol. Struct. Dyn. 42 (2024), pp. 362–383. doi:10.1080/07391102.2023.2192804.
  • E.F. Bülbül, D. Robaa, P. Sun, F. Mahmoudi, J. Melesina, M. Zessin, M. Schutkowski, and W. Sippl, Application of Ligand- and structure-based prediction models for the design of alkylhydrazide-based HDAC3 inhibitors as novel anti-cancer compounds, Pharmaceuticals (Basel) 16 (2023), pp. 968. doi:10.3390/ph16070968.
  • S. Banerjee, S. Dumawat, T. Jha, G. Lanka, N. Adhikari, and B. Ghosh, Fragment-based structural exploration and chemico-biological interaction study of HDAC3 inhibitors through non-linear pattern recognition, chemical space, and binding mode of interaction analysis, J. Biomol. Struct. Dyn. 23 (2023), pp. 1–23. doi:10.1080/07391102.2023.2248509.
  • D.N. Reddy, F. Ballante, T. Chuang, A. Pirolli, B. Marrocco, and G.R. Marshall, Design and synthesis of simplified largazole analogues as isoform-selective human lysine deacetylase inhibitors, J. Med. Chem. 59 (2016), pp. 1613–1633. doi:10.1021/acs.jmedchem.5b01632.
  • D.R. Reddy, F. Ballante, N.J. Zhou, and G.R. Marshall, Design and synthesis of benzodiazepine analogs as isoform-selective human lysine deacetylase inhibitors, Eur. J. Med. Chem. 127 (2017), pp. 531–553. doi:10.1016/j.ejmech.2016.12.032.
  • The binding database, (Accessed on 26 April 2023). Available at https://www.bindingdb.org/.
  • D. Fourches, E. Muratov, and A. Tropsha, Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research, J. Chem. Inf. Model. 50 (2010), pp. 1189–1204. doi:10.1021/ci100176x.
  • Discovery studio 3.0 (Ds 3.0). Accelrys Inc. CA, USA. (2015). Available at https://www.accelrys.com.
  • C.W. Yap, PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • The simple, user-friendly, and reliable online standalone tools freely, (Accessed on 27 November 2023) Available at https://teqip.jdvu.ac.in/QSAR_Tools/.
  • L.L. Liu, L. Lu, Y. Lu, M.Y. Zheng, X.M. Luo, W.L. Zhu, and K.X. Chen, Novel bayesian classification models for predicting compounds blocking hERG potassium channels, Acta Pharmacol. Sin. 35 (2014), pp. 1093–1102. doi:10.1038/aps.2014.35.
  • S. Banerjee, S.A. Amin, N. Adhikari, and T. Jha, Essential elements regulating HDAC8 inhibition: A classification based structural analysis and enzyme-inhibitor interaction study of hydroxamate based HDAC8 inhibitors, J. Biomol. Struct. Dyn. 38 (2020), pp. 5513–5525. doi:10.1080/07391102.2019.1704881.
  • H. Zhang, Y.L. Kang, Y.Y. Zhu, K.X. Zhao, J.Y. Liang, L. Ding, and J. Zhang, Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity, Toxicol. Vitro 41 (2017), pp. 56–63. doi:10.1016/j.tiv.2017.02.016.
  • S. Banerjee, S.A. Amin, and T. Jha, A fragment-based structural analysis of MMP-2 inhibitors in search of meaningful structural fragments, Comput. Biol. Med. 144 (2022), pp. 105360. doi:10.1016/j.compbiomed.2022.105360.
  • E. Mombelli, G. Raitano, and E. Benfenati, In silico prediction of chemically induced mutagenicity: How to use QSAR models and interpret their results, Methods Mol. Biol. 1425 (2016), pp. 87–105.
  • T. Ferrari, D. Cattaneo, G. Gini, N. Golbamaki Bakhtyari, A. Manganaro, and E. Benfenati, Automatic knowledge extraction from chemical structures: The case of mutagenicity prediction, SAR QSAR Environ. Res. 24 (2013), pp. 365–383. doi:10.1080/1062936X.2013.773376.
  • H. Yang, J. Li, Z. Wu, W. Li, G. Liu, and Y. Tang, Evaluation of different methods for identification of structural alerts using chemical Ames mutagenicity data set as a benchmark, Chem. Res. Toxicol. 30 (2017), pp. 1355–1364. doi:10.1021/acs.chemrestox.7b00083.
  • K. Roy, S. Kar, and R.N. Das, A Primer on QSAR/QSPR Modeling: Fundamental Concepts, Springer, New York, 2015.
  • Statistica 7.1, Statsoft lnc. 2300 East 14th Street Tulsa, OK 74104, United States.
  • S.S. Wilks, Certain Generalizations in the Analysis of Variance, Biometrika 24 (1932), pp. 471–494. doi:10.1093/biomet/24.3-4.471.
  • B.W. Matthews, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta 405 (1975), pp. 442–451. doi:10.1016/0005-2795(75)90109-9.
  • F.J. Parado-Parado, E. Uriate, F. Borges, and H. Gonzalez-Diaz, Multi-target spectral moments for QSAR and complex networks study of antibacterial drugs, Eur. J. Med. Chem. 44 (2009), pp. 4516–4521. doi:10.1016/j.ejmech.2009.06.018.
  • T. Fawcett, A basic ROC graph showing five discrete classifiers, Pattern Recognit. Lett. 27 (2006), pp. 861–874. doi:10.1016/j.patrec.2005.10.010.
  • A. Speck-Planche, V.V. Kleandrova, F. Luan, and M.N. Cordeiro, Fragment-based QSAR model toward the selection of versatile anti-sarcoma leads, Eur. J. Med. Chem. 46 (2011), pp. 5910–5916. doi:10.1016/j.ejmech.2011.09.055.
  • A. Perez-Garrido, A.M. Helguera, F. Borges, M.N.D. Cordeiro, V. Rivero, and A.G. Escudero, Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models, J. Chem. Inf. Model. 51 (2011), pp. 2746–2759. doi:10.1021/ci2003076.
  • RCSB Protein Data Bank; homepage, (Accessed 2 November 2023). Available at https://www.rcsb.org/.
  • Schrodinger, Suite, Schrodinger, LLC, New York, USA, 2019. http://www.Schrodinger.com/Glide.
  • Groningen machine for chemical simulations, (Accessed 15 December 2023); software available at https://www.gromacs.org/.
  • H.J.C. Berendsen, D. van der Spoel, and R. van Drunen, A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun. 1–2 (1995), pp. 43–56. doi:10.1016/0010-4655(95)00042-E.
  • R.B. Best, X. Zhu, J. Shim, P.E. Lopes, J. Mittal, M. Feig, and A.D.J. Mackerell, Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles, J. Chem. Theory Comput. 8 (2012), pp. 3257–3273. doi:10.1021/ct300400x.
  • CHARMM General force field, (Accessed 20 December 2023); ( CGenFF) available at https://cgenff.umaryland.edu/.
  • A.A. Al-Karmalawy, M.A. Dahab, A.M. Metwaly, S.S. Elhady, E.B. Elkaeed, I.H. Eissa, and K.M. Darwish, Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor, Front. Chem. 9 (2021), pp. 661230. doi:10.3389/fchem.2021.661230.
  • V.L. Golo and K.V. Shaıtan, Dynamic attractor for the Berendsen thermostat an the slow dynamics of biomacromolecules, Biofizika 47 (2002), pp. 611–617.
  • S. Jana, S. Banerjee, S.K. Baidya, B. Ghosh, T. Jha, and N. Adhikari, A combined ligand-based and structure-based in silico molecular modeling approach to pinpoint the key structural attributes of hydroxamate derivatives as promising meprin β inhibitors, J. Biomol. Struct. Dyn. In Press (2024), pp. 1–17. doi:10.1080/07391102.2023.2298394.
  • S. Weaver and M.P. Gleeson, The importance of the domain of applicability in QSAR modelling, J. Mol. Graph. Model. 26 (2008), pp. 1315–1326. doi:10.1016/j.jmgm.2008.01.002.
  • OECD. Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models, in OECD Series on Testing and Assessment, 69, OECD Publishing, Paris, 2014. doi:10.1787/9789264085442-en.
  • J.C. Dearden, M.T. Cronin, and K.L. Kaiser, How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR), SAR QSAR Environ. Res. 20 (2009), pp. 241–266. doi:10.1080/10629360902949567.
  • E. López-López, J.J. Naveja, and J.L. Medina-Franco, DataWarrior: An evaluation of the open-source drug discovery tool, Expert Opin. Drug Discov. 14 (2019), pp. 335–341. doi:10.1080/17460441.2019.1581170.
  • T. Sander, J. Freyss, M. von Korff, and C. Rufener, DataWarrior: An open-source program for chemistry aware data visualization and analysis, J. Chem. Inf. Model. 55 (2015), pp. 460–473. doi:10.1021/ci500588j.
  • V. Đorđević, S. Pešić, J. Živković, G.M. Nikolić, and A.M. Veselinović, Development of novel antipsychotic agents by inhibiting dopamine transporter – in silico approach, New J. Chem. 46 (2022), pp. 2687–2696. doi:10.1039/D1NJ04759K.
  • S.E. Adeniji, S. Uba, and A. Uzairu, Multi-linear regression model, molecular binding interactions and ligand-based design of some prominent compounds against Mycobacterium tuberculosis, Netw. Model. Anal. Health Inform. Bioinform. 9 (2020), pp. 1–18. doi:10.1007/s13721-019-0212-6.
  • H.L. Lin, Y.W. Chiu, C.C. Wang, and C.W. Tung, Computational prediction of Calu-3-based in vitro pulmonary permeability of chemicals, Regul. Toxicol. Pharmacol. 135 (2022), pp. 105265. doi:10.1016/j.yrtph.2022.105265.
  • E. Papa, L. van der Wal, J.A. Amot, and P. Gramatica, Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis, Sci. Total Environ. 470 (2014), pp. 1040–1046. doi:10.1016/j.scitotenv.2013.10.068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.