0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling lethality and teratogenicity of zebrafish (Danio rerio) due to β-lactam antibiotics employing the QSTR approach

, &
Received 18 May 2024, Accepted 07 Jul 2024, Published online: 29 Jul 2024

References

  • World Health Organization (WHO), An estimated 12.6 million deaths each year are attributable to unhealthy environments, World Health Organization, 2016. accessed January, 2024, Available at https://www.who.int/news/item/15-03-2016-an-estimated-12-6-million-deaths-each-year-are-attributable-to-unhealthy-environments.
  • G.H. Brundtland and M. Khalid, Our Common Future, Oxford University Press, Oxford, GB, 1987.
  • I. Dincer and M.A. Rosen, Energy, environment and sustainable development, Appl. Energy 64 (1999), pp. 427–440. doi:10.1016/S0306-2619(99)00111-7.
  • S.M. Lélé, Sustainable development: A critical review, World Dev. 19 (1991), pp. 607–621. doi:10.1016/0305-750X(91)90197-P.
  • C.G. Daughton and T.A. Ternes, Pharmaceuticals and personal care products in the environment: Agents of subtle change?, Environ. Health Perspect. 107 (1999), pp. 907–938. doi:10.1289/ehp.99107s6907.
  • A.B. Boxall, M.A. Rudd, B.W. Brooks, D.J. Caldwell, K. Choi, S. Hickmann, E. Innes, K. Ostapyk, J.P. Staveley, T. Verslycke, and G.T. Ankley, Pharmaceuticals and personal care products in the environment: What are the big questions?, Environ. Health Perspect. 120 (2012), pp. 1221–1229. doi:10.1289/ehp.1104477.
  • H. Yang, G. Lu, Z. Yan, J. Liu, H. Dong, X. Bao, X. Zhang, and Y. Sun, Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion, J. Hazard. Mater. 391 (2020), pp. 122245. doi:10.1016/j.jhazmat.2020.122245.
  • L.H. Yang, G.G. Ying, H.C. Su, J.L. Stauber, M.S. Adams, and M.T. Binet, Growth‐inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata, Environ. Toxicol. Chem. 27 (2008), pp. 1201–1208. doi:10.1897/07-471.1.
  • M. Gonzalez-Pleiter, S. Gonzalo, I. Rodea-Palomares, F. Leganes, R. Rosal, K. Boltes, E. Marco, and F. Fernandez-Pinas, Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment, Water Res. 47 (2013), pp. 2050–2064. doi:10.1016/j.watres.2013.01.020.
  • V.N. Binh, N. Dang, N.T.K. Anh, L.X. Ky, and P.K. Thai, Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy, Chemosphere 197 (2018), pp. 438–450. doi:10.1016/j.chemosphere.2018.01.061.
  • X.Z. Yi, C.H. Lin, E.J.L. Ong, M. Wang, and Z. Zhou, Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure, Chemosphere 216 (2019), pp. 213–223. doi:10.1016/j.chemosphere.2018.10.087.
  • A.J. Browne, M.G. Chipeta, G. Haines-Woodhouse, E.P.A. Kumaran, B.H.K. Hamadani, S. Zaraa, N.J. Henry, A. Deshpande, R.C. Reiner, N.P. Day, and A.D. Lopez, Global antibiotic consumption and usage in humans, 2000–18: A spatial modelling study, Lancet Planet. Health 5 (2021), pp. 893–904. doi:10.1016/S2542-5196(21)00280-1.
  • A. Fleming, On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenza, Br. J. Exp. Pathol. 10 (1929), pp. 226.
  • D.J. Tipper and J.L. Strominger, Mechanism of action of penicillins: A proposal based on their structural similarity to acyl-D-alanyl-D-alanine, Proc. Natl. Acad. Sci. 54 (1965), pp. 1133–1141. doi:10.1073/pnas.54.4.1133.
  • P. Kovalakova, L. Cizmas, T.J. McDonald, B. Marsalek, M. Feng, and V.K. Sharma, Occurrence and toxicity of antibiotics in the aquatic environment: A review, Chemosphere 251 (2020), pp. 126351. doi:10.1016/j.chemosphere.2020.126351.
  • A. Brahms and C. Peifer, Targeted hydrolysis of β-lactam antibiotics in dry suspension residue: A proposed method to reduce ecological toxicity and bacterial resistance, Water 13 (2021), pp. 2225. doi:10.3390/w13162225.
  • Y. Hu, D. Lei, D. Wu, J. Xia, W. Zhou, and C. Cui, Residual β-lactam antibiotics and ecotoxicity to Vibrio fischeri, Daphnia magna of pharmaceutical wastewater in the treatment process, J. Hazard. Mater. 425 (2022), pp. 127840. doi:10.1016/j.jhazmat.2021.127840.
  • A. Lombardo, A. Roncaglioni, E. Benfenati, M. Nendza, H. Segner, S. Jeram, E. Paune, and G. Schuurmann, Optimizing the aquatic toxicity assessment under REACH through an Integrated Testing Strategy (ITS), Environ. Res. 135 (2014), pp. 156–164. doi:10.1016/j.envres.2014.09.002.
  • ECHA, The use of alternatives to testing on animals for the REACH Regulation, 2020. accessed February, 2024, Available at https://echa.europa.eu/documents/10162/0/alternatives_test_animals_2020_en.pdf.
  • European Union (EU), Directive 2010/63/EU of the european parliament and of the council on the protection of animals used for scientific purposes, 2010. accessed February, 2024, Available at https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF.
  • US TSCA, Toxic substances control act, 1976. accessed February, 2024, Available at https://www.govinfo.gov/content/pkg/COMPS-895/pdf/COMPS-895.pdf.
  • CEPA, Background Paper: Evolution of the Existing Substances Risk Assessment Program Under the Canadian Environmental Protection Act, (1999). accessed February, 2024. Available at https://www.canada.ca/en/health-canada/services/chemical-substances/chemicals-management-plan/sciencecommittee/meeting-records-reports/background-paper-evolution-existing-substances-riskassessment-program-canadian-environmental-protection-act-1999.html#shr-pg0.
  • D.D. Roode, C. Hoekzema, S. de Vries-Buitenweg, B. van de Waart, and J. Van der Hoeven, QSARs in ecotoxicological risk assessment, Regul. Toxicol. Pharmacol. 45 (2006), pp. 24–35. doi:10.1016/j.yrtph.2006.01.012.
  • P. Gramatica, S. Cassani, and A. Sangion, Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives’ design, Green Chem. 18 (2016), pp. 4393–4406. doi:10.1039/C5GC02818C.
  • J.P. Zubrod, N. Galic, M. Vaugeois, and D.A. Dreier, Bio-QSARs 2.0: Unlocking a new level of predictive power for machine learning-based ecotoxicity predictions by exploiting chemical and biological information, Environ. Int. 186 (2024), pp. 108607. doi:10.1016/j.envint.2024.108607.
  • C. Hansch, P.P. Maloney, T. Fujita, and R.M. Muir, Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients, Nature 194 (1962), pp. 178–180. doi:10.1038/194178b0.
  • F. Hamilton, An Account of the Fishes Found in the River Ganges and Its Branches, Archibald Constable and Co, Edinburgh & London, 1822.
  • M.R. Embry, S.E. Belanger, T.A. Braunbeck, M. Galay-Burgos, M. Halder, D.E. Hinton, M.A. Léonard, A. Lillicrap, T. Norberg-King, and G. Whale, The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research, Aquat. Toxicol. 97 (2010), pp. 79–87. doi:10.1016/j.aquatox.2009.12.008.
  • S.E. Belanger, J.M. Rawlings, and G.J. Carr, Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals, Environ. Toxicol. Chem. 32 (2013), pp. 1768–1783. doi:10.1002/etc.2244.
  • Y. Horie, T. Yamagishi, M. Koshio, T. Iguchi, and N. Tatarazako, Lethal and sublethal effects of aniline and chlorinated anilines on zebrafish embryos and larvae, J. Appl. Toxicol. 37 (2017), pp. 836–841. doi:10.1002/jat.3431.
  • A.J. Hill, H. Teraoka, W. Heideman, and R.E. Peterson, Zebrafish as a model vertebrate for investigating chemical toxicity, Toxicol. Sci. 86 (2005), pp. 6–19. doi:10.1093/toxsci/kfi110.
  • D.J. Milan, T.A. Peterson, J.N. Ruskin, R.T. Peterson, and C.A. MacRae, Drugs that induce repolarization abnormalities cause bradycardia in zebrafish, Circulation 107 (2003), pp. 1355–1358. doi:10.1161/01.CIR.0000061912.88753.87.
  • J.A. McLeish, T.J. Chico, H.B. Taylor, C. Tucker, K. Donaldson, and S.B. Brown, Skin exposure to micro-and nano-particles can cause haemostasis in zebrafish larvae, Thromb. Haemost. 103 (2010), pp. 797–807. doi:10.1160/TH09-06-0413.
  • K. Howe, M.D. Clark, C.F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J.E. Collins, S. Humphray, K. McLaren, and D.L. Stemple, The zebrafish reference genome sequence and its relationship to the human genome, Nature 496 (2013), pp. 498–503. doi:10.1038/nature12111.
  • OECD 236, Guidelines for the testing of chemicals, section 2. Fish Embryo Acute Toxicity (FET), OECD Publishing, Paris, 2013. Available at accessed January, 2024. doi:10.1787/9789264203709-en.
  • Z. Liu, K. Dang, J. Gao, P. Fan, C. Li, H. Wang, H. Li, X. Deng, Y. Gao, and A. Qian, Toxicity prediction of 1, 2, 4-triazoles compounds by QSTR and interspecies QSTTR models, Ecotoxicol. Environ. Saf. 242 (2022), pp. 113839. doi:10.1016/j.ecoenv.2022.113839.
  • Y. Han, Y. Ma, B. Chen, J. Zhang, and C. Hu, Hazard assessment of beta-lactams: Integrating in silico and QSTR approaches with in vivo zebrafish embryo toxicity testing, Ecotoxicol. Environ. Saf. 229 (2022), pp. 113106. doi:10.1016/j.ecoenv.2021.113106.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, 11, John Wiley & Sons, Weinheim, Germany, 2008.
  • A. Mauri, alvaDesc: A tool to calculate and analyze molecular descriptors and fingerprints, in Ecotoxicological QSARs, Journal of Pharmacological and Toxicological Methods, K. Roy, ed., Humana, New York, 2020, pp. 801–820.
  • J. Cai, J. Luo, S. Wang, and S. Yang, Feature selection in machine learning: A new perspective, Neurocomputing 300 (2018), pp. 70–79. doi:10.1016/j.neucom.2017.11.077.
  • A.K. Saxena and P. Prathipati, Comparison of MLR, PLS and GA-MLR in QSAR analysis, SAR QSAR Environ. Res. 14 (2003), pp. 433–445. doi:10.1080/10629360310001624015.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemometr. Intell. Lab. Syst 152 (2016), pp. 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • S. Wold, M. Sjostrom, and L. Eriksson, PLS-regression: A basic tool of chemometrics, Chemometr. Intell. Lab. Syst. 58 (2001), pp. 109–130. doi:10.1016/S0169-7439(01)00155-1.
  • K. Roy, S. Kar, and R.N. Das, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, Academic Press, NY, 2015.
  • C. Rücker, G. Rücker, and M. Meringer, Y-randomization–a useful tool in QSAR validation, or folklore, J. Chem. Inf. Model. 47 (2007), pp. 2345–2357. doi:10.1021/ci700157b.
  • Z. Wu, D. Li, J. Meng, and H. Wang, Introduction to SIMCA-P and its application, in Handbook of Partial Least Squares: Concepts, Methods and Applications, Springer Handbooks of Computational Statistics, V.E. Vinzi, W. Chin, J. Henseler, and H. Wang, eds., Springer, Berlin, Heidelber, 2010, pp. 757–774.
  • L.B. Kier and L.H. Hall, An electrotopological-state index for atoms in molecules, Pharm. Res. 7 (1990), pp. 801–807. doi:10.1023/A:1015952613760.
  • K. Roy and R.N. Das, The “ETA” indices in QSAR/QSPR/QSTR research, in Pharmaceutical Sciences: Breakthroughs in Research and Practice, K. Roy, ed., IGI Global, PA, 2017, pp. 978–1011.
  • V.N. Viswanadhan, A.K. Ghose, G.R. Revankar, and R.K. Robins, Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics, J. Chem. Inf. Comput. Sci. 29 (1989), pp. 163–172.
  • E.B. Alencar Filho, K.C. Weber, and M.L. Vasconcellos, Selection of 2D/3D molecular descriptors and QSAR modeling of aromatic Morita–Baylis–Hillman adducts with leishmanicidal activities, Med. Chem. Res. 23 (2014), pp. 5328–5335. doi:10.1007/s00044-014-1077-y.
  • D. Saxena, A. Sharma, M.H. Siddiqui, and R. Kumar, Investigating molecular features that influence blood−brain barrier permeability of compounds, Int. J. Acad. Med. 9 (2023), pp. 138–144.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701. doi:10.1002/qsar.200610151.
  • J.G. Topliss and R.P. Edwards, Chance factors in studies of quantitative structure-activity relationships, J. Med. Chem. 22 (1979), pp. 1238–1244. doi:10.1021/jm00196a017.
  • K. Mayo-Bean, K. Moran, B. Meylan, and P. Ranslow, Methodology Document for the Ecological Structure-Activity Relationship Model (ECOSAR) Class Program, US-EPA, Washington DC, 2012, p. 46. Available at https://www.epa.gov/sites/default/files/2015-09/documents/ecosartechfinal.pdf.
  • F. Melnikov, J. Costal, A. Voutchkova-Kostal, J.B. Zimmerman, and P.T. Anastas, Assessment of predictive models for estimating the acute aquatic toxicity of organic chemicals, Green Chem. 18 (2016), pp. 4432–4445. doi:10.1039/C6GC00720A.
  • K. Roy, P. Ambure, and S. Kar, How precise are our quantitative structure–activity relationship derived predictions for new query chemicals?, ACS Omega 3 (2018), pp. 11392–11406. doi:10.1021/acsomega.8b01647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.