214
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effect of organic content and frequency on degradation and pore pressure in marine organic soils

, &
Pages 108-122 | Received 30 Dec 2016, Accepted 31 Mar 2017, Published online: 16 May 2017

References

  • Andersen, K. H. 1976. Behavior of clay subjected to undrained cyclic loading. Proceedings of the International Congress on Behavior of Offshore Structures, Norwegian Institute of Technology, Trondheim, Norway, 392–403.
  • Andersen, K. H., J. H. Pool, S. B. Brown, and W. F. Rosenbrand. 1980. Cyclic and static laboratory tests on drammen clay. Journal of Soil Mechanics & Foundations Division 106 (5):499–529.
  • Ansal, A. M., and A. Erken. 1989. Undrained behavior of clay under cyclic shear stresses. Journal of Geotechnical Engineering 115 (7):968–83. doi:10.1061/(asce)0733-9410(1989)115:7(968)
  • ASTM D2974–00. 2005. Standard test methods for moisture, ash, and organic matter of peat and other organic soils. West Conshohocken, PA, USA: ASTM International.
  • ASTM D5311/D5311M-13. 2013. Standard test method for load controlled cyclic triaxial strength of soil. West Conshohocken, PA, USA: ASTM International.
  • ASTM D5715–14. 2014. Standard practice for estimating the degree of humification of peat and other organic soils (visual/manual method). West Conshohocken, PA, USA: ASTM International.
  • Balasubramaniam, A. S., and W. Uddin. 1977. Deformation characteristics of weathered Bangkok Clay in triaxial extension. Géotechnique 27 (1):75–92. doi:10.1680/geot.1977.27.1.75
  • Bate, B., H. Choo, and S. E. Burns. 2013. Dynamic properties of fine-grained soils engineered with a controlled organic phase. Soil Dynamics and Earthquake Engineering 53:176–86. doi:10.1016/j.soildyn.2013.07.005
  • Boulanger, R. W., R. Arulnathan, L. F. Harder, Jr., R. A. Torres, and M. W. Driller. 1998. Dynamic properties of Sherman Island peat. Journal of Geotechnical and Geoenvironmental Engineering 124 (1):12–20. doi:10.1061/(asce)1090-0241(1998)124:1(12)
  • Brown, S. F., A. K. F. Lashine, and A. F. L. Hyde. 1975. Repeated load triaxial testing of silty clay. Géotechnique 25:95–114. doi:10.1680/geot.1975.25.1.95
  • Caserta A., S. Martino, F. Bozzano, and A. Govoni. 2012. Dynamic properties of low velocity alluvial deposits influencing seismically-induced shear strains: The Grottaperfetta valley test-site (Rome, Italy). Bulletin of Earthquake Engineering 10:1133–62. doi:10.1007/s10518-012-9349-8
  • Dhowian, A. W., and T. B. Edil. 1981. Consolidation behavior of peats. Geotechnical Testing Journal 3 (3):105–14. doi:10.1520/gtj10881j
  • Fu, W. X., Y. G. Wang, and G. H. Liu. 1995. Peat accumulation and sea level changes in Holocene along the coast of Liaoning. Journal of oceanography of Huanghai & Bohai Seas 13 (2):23–32. (in Chinese).
  • Guo, L., J. Wang, Y. Q. Cai, H. L. Liu, Y. F. Gao, and H. L. Sun. 2013. Undrained deformation behavior of saturated soft clay under long-term cyclic loading. Soil Dynamics and Earthquake Engineering 50:28–37. doi:10.1016/j.soildyn.2013.01.029
  • Hendry, M. T., J. S. Sharma, C. D. Martin, and S. L. Barbour. 2012. Effect of fiber content and structure on anisotropic elastic stiffness and shear strength of peat. Canadian Geotechnical Journal 49:403–15. doi:10.1139/t2012-003
  • Hobbs, N. B. 1986. Mire morphology and the properties and behavior of some British and foreign peats. Quarterly Journal of Engineering Geology and Hydrogeology 19:7–80. doi:10.1144/gsl.qjeg.1986.019.01.02
  • Hoogland, T., J. J. H. van den Akker, and D. J. Brus. 2012. Modeling the subsidence of peat soils in the Dutch coastal area. Geoderma 171–72:92–97. doi:10.1016/j.geoderma.2011.02.013
  • Hsu, C.-C., and M. Vucetic. 2006. Threshold shear strain for cyclic pore-water pressure in cohesive soils. Journal of Geotechnical and Geoenvironmental Engineering 132 (10):1325–35. doi:10.1061/(asce)1090-0241(2006)132:10(1325)
  • Hyde, A. F. L., K. Yasuhara, and K. Hirao. 1993. Stability criteria for marine clay under one-way cyclic loading. Journal of Geotechnical Engineering 119 (11):1771–89.
  • Idriss, I. M., R. Dobry, E. H. Doyle, and R. D. Singh. 1976. Behavior of soft clays under earthquake loading conditions. Proceedings of Eighth Annual Offshore Technology Conference, Offshore Technology Conference, Dallas.
  • Idriss, I. M., R. Dobry, and R. D. Singh. 1978. Nonliear behavior of soft clays during cyclic loading. Journal of Soil Mechanics & Foundations Division 104 (GT12):1427–47.
  • Kalantari, B., and A. Prasad. 2014. A study of the effect of various curing techniques on the strength of stabilized peat. Transportation Geotechnics 1:119–28. doi:10.1016/j.trgeo.2014.06.002
  • Kallioglou, P., T. Tika, G. Koninis, S. Papadopoulos, and K. Pitilakis. 2009. Shear modulus and damping ratio of organic soil. Geotechnical and Geological Engineering 27:217–35. doi:10.1007/s10706-008-9224-1
  • Kishida, T., R. W. Boulanger, T. M. Wehling, and M. W. Driller. 2006. Variation of small strain stiffness for peat and organic soil. Proceedings of the 8th U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, San Francisco, CA, USA.
  • Kishida, T., T. M. Wehling, R. W. Boulanger, R. Arulnathan, M. W. Driller, and K. H. Stokoe. 2009. Dynamic properties of highly organic soils from Montezuma Slough and Clifton Court. Journal of Geotechnical and Geoenvironmental Engineering 135 (4):525–32. doi:10.1061/(asce)1090-0241(2009)135:4(525)
  • Kramer, S. L. 1996. Dynamic response of peats. Final Research Rep. No. WA-RD 412.1, Washington State Transportation Center, University of Washington, Seattle, Washington.
  • Kramer, S. L. 2000. Dynamic response of Mercer slough peat. Journal of Geotechnical and Geoenvironmental Engineering 126 (6):504–10. doi:10.1061/(asce)1090-0241(2000)126:6(504)
  • Landva, A. O., E. O. Korpijaakko, and P. E. Pheeney. 1983. Geotechnical classification of peats and organic soils. In Testing of peats and organic soils, ASTM STP 820, ed. P. M. Jarrett, 37–51. Toronto, Canada: American Society of Testing and Materials.
  • Lee, K. L., and J. A. Focht. 1976. Strength of clay subjected to cyclic loading. Marine Georesources and Geotechnology 1 (3):165–85. doi:10.1080/10641197609388162
  • Matasovic, N., and M. Vucetic. 1995. Generalized cyclic degradation-pore-pressure generation model for clays. Journal of Geotechnical Engineering 121 (1):33–42. doi:10.1016/0148-9062(95)99535-6
  • Matsui, T., H. Ohara, and T. Ito. 1980. Cyclic stress-strain history and shear characteristics of clays. Journal of Geotechnical Engineering Journal of the Geotechnical Engineering Division 106 (10):1101–20.
  • Mesri, G., and M. Ajlouni. 2007. Engineering properties of fibrous peats. Journal of Geotechnical and Geoenvironmental Engineering 133 (7):850–66. doi:10.1061/(asce)1090-0241(2007)133:7(850)
  • Mitchell, R. J., and R. D. King. 1977. Cyclic loading of an Ottawa area Champlain Sea clay. Canadian Geotechnical Journal 14:52–63. doi:10.1139/t77-004
  • Mortezaie, A. R., and M. Vucetic. 2013. Effect of frequency and vertical stress on cyclic degradation and pore water pressure in clay in the NGI simple shear device. Journal of Geotechnical and Geoenvironmental Engineering 139 (10):1727–37. doi:10.1061/(asce)gt.1943-5606.0000922
  • Moses, G. G., S. N. Rao, and P. N. Rao. 2003. Undrained strength behaviour of a cemented marine clay under monotonic and cyclic loading. Ocean Engineering 230:1765–89. doi:10.1016/s0029-8018(03)00018-0
  • O’Kelly, B. C. 2006. Compression and consolidation anisotropy of some soft soils. Geotechnical and Geological Engineering 24 (6):1715–28. doi:10.1007/s10706-005-5760-0
  • O’Kelly, B. C. 2013. Consolidated-drained triaxial compression testing of peat. Geotechnical Testing Journal 36 (3):1–12. doi:10.1520/gtj20120053
  • O’Kelly, B. C., and L. Zhang. 2013. Consolidated-drained triaxial compression testing of peat. Geotechnical Testing Journal 36 (3):1–12. doi:10.1520/gtj20120053
  • Özaydɪn, K., and A. Erauvanlɪ. 1980. The generation of pore pressures in clayey soils during earthquakes. Proceedings of the 7th world conference on Earthquake Engineering, Istanbul, Turkey, 2, 317–20.
  • Sangrey, D. A., D. J. Henkel, and N. I. Esrign. 1969. The effective stress response of a saturated clay soil to repeated loading. Canadian Geotechnical Journal 6:241–52. doi:10.1139/t69-027
  • Seed, H. B., and C. K. Chan. 1966. Clay strength under earthquake loading conditions. Journal of Soil Mechanics & Foundations Division 92:53–78.
  • Seed, H. B., and I. M. Idriss. 1970. Analyses of ground motions at Union Bay, Seattle during earthquakes and distant unclear blasts. Bulletin of the Seismological Society of America 60 (1):125–36.
  • Stoke, K. H., J. A. Bay, B. L. Rosenbald, S. K. Hwang, and M. R. Twede. 1994. In situ seismic and dynamic laboratory measurements of geotechnical materials at Queensboro Bridge and Roosevelt Island. Geotechnical Engineering Rep. No. GR94–5, Civil Engineering Deptartment, University of Texas at Austin, Austin, TX.
  • Teachavorasinskun, S., P. Thongchim, and P. Lukkunaprasit. 2002. Stress rate effect on the stiffness of a soft clay from cyclic, compression and extension triaxial test. Géotechnique 52 (1):51–54. doi:10.1680/geot.52.1.51.40831
  • Thiers, G. R., and H. B. Seed. 1968. Cyclic stress-strain characteristics of clay. Journal of Soil Mechanics & Foundations Division 94:558–69.
  • Vucetic, M. 1988. Normalized behavior of offshore clay under uniform cyclic loading. Canadian Geotechnical Journal 25 (1):33–41. doi:10.1139/t88-004
  • Vucetic, M. 1994a. Cyclic threshold shear strains in soils. Journal of Geotechnical Engineering 120 (12):2208–28. doi:10.1061/(asce)0733-9410(1994)120:12(2208)
  • Vucetic, M. 1994b. Cyclic characterization for seismic regions based on PI. Proceedings, 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi/Bombay/Calcutta, Vol. 1, 329–32.
  • Vucetic, M., and R. Dobry. 1988. Degradation of marine clays under cyclic loading. Journal of Geotechnical Engineering 114 (2):133–49. doi:10.1061/(asce)0733-9410(1988)114:2(133)
  • Vucetic, M., and A. Mortezaie. 2015. Cyclic secant shear modulus versus pore water pressure in sands at small cyclic strains. Soil Dynamics and Earthquake Engineering 70:60–72. doi:10.1016/j.soildyn.2014.12.001
  • Wang, G., and Y. Xiao. 1998. Peat resources of Liaoning province. Journal of Liaoning Normal University (Natural Science) 21 (4):341–47. (in Chinese).
  • Wang, M., Z. G. Liu, X. H. Ma, and G. D. Wang. 2012. Division of organic carbon reserves of peatlands in China. Wetland Science 10 (2):156–63. (in Chinese).
  • Wang, Y. K., L. Guo, Y. F. Gao, Y. Qiu, X. Q. Hu, and Y. Zhang. 2016. Anisotropic drained deformation behavior and shear strength of natural soft marine clay. Marine Georesources and Geotechnology 34 (5):493–502. doi:10.1080/1064119x.2015.1081653
  • Wang, Y. K., D. Wu, Y. Qiu, and D. Wang. 2016. Experimental Investigation on cyclic deformation behavior of soft marine clay involved principal stress rotation. Marine Georesources and Geotechnology 35 (4):571–77. doi:10.1080/1064119x.2016.1194922
  • Wardwell, R. E., W. A. Charlie, and K. A. Doxtader. 1983. Test method for determining the potential for decomposition in organic soils. Testing of peats and organic soils, STP 820, ASTM, West Conshohocken, Pa, 218–29.
  • Wehling, T. M., R. W. Boulanger, R. Arulnathan, L. F. Harder, Jr., and M. W. Driller. 2003. Nonlinear dynamic properties of a fibrous organic soil. Journal of Geotechnical and Geoenvironmental Engineering 129 (10):929–39. doi:10.1061/(asce)1090-0241(2003)129:10(929)
  • Yamaguchi, H., Y. Ohira, and K. Kogure. 1985. Volume change characteristics of undisturbed fibrous peat. Soils and Foundations 25 (2):119–34. doi:10.3208/sandf1972.25.2_119
  • Yasuhara, K., T. Yamanouchi, and K. Hirao. 1982. Cyclic strength and deformation of normally consolidated clay. Soils and Foundations 22 (3):77–91. doi:10.3208/sandf1972.22.3_77
  • Zhang, N. 2014. Analytical study on the scattering and diffraction of SH waves induced by concave topographies and sites. Ph.D. thesis, Research Institute of Geotechnical Engineering, Hohai University, Nanjing, China. (in Chinese).
  • Zhong, J., and Z. Zhang. 1981. The buried peat in the littoral areas of China and the paleogeography of its formation. Oceanologia Et Limnologia Sinica 12 (5):412–21. (in Chinese).
  • Zhou, J., and X. N. Gong. 2001. Strain degradation of saturated clay under cyclic loading. Canadian Geotechnical Journal 38:208–12. doi:10.1139/cgj-38–1-208
  • Zwanenberg, C. 2005. The influence of anisotropy on the consolidation behavior of peat. Ph.D. Diss., TU Delft, Delft, The Netherlands.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.