275
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

Abutment scour depth modeling using neuro-fuzzy-embedded techniques

, ORCID Icon, , , &
Pages 190-200 | Received 21 Jun 2017, Accepted 18 Dec 2017, Published online: 16 Jan 2018

References

  • Abdulshahed, A. M., A. P. Longstaff, and S. Fletcher. 2015. The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Applied Soft Computing 27:158–68. doi:10.1016/j.asoc.2014.11.012.
  • Abraham, A. 2001. Neuro fuzzy systems: State-of-the-art modeling techniques. In Connectionist models of neurons, learning processes, and artificial intelligence, School of Computing & Information Technology, Monash University, Australia, vol. 2084, 269–76. doi:10.1007/3-540-45720-8_30.
  • Amini, A., B. W. Melville, and T. A. Mohamad. 2014. Local scour at piled bridge piers including an examination of superposition method. Canadian Journal of Civil Engineering 41 (5), 461–71. doi:10.1139/cjce-2011-0389.
  • Amini, A., and T. A. Mohamed. 2016. Local scour prediction around piers with complex geometry. Marine Georesources & Geotechnology 35:857–64. doi:10.1080/1064119X.2016.1256923.
  • Amini, A., T. A. Mohamad, A. A. Aziz, A. H. Ghazali, and B. B. Huat. 2010. A local scour prediction method for pile cap in complex piers. ICE-Water Management 164 (2):73–80. doi:10.1680/wama.900064.
  • Aqil, M., I. Kita, A. Yano, and S. Nishiyama. 2007. Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modeling tool. Journal of Environmental Management 85 (1):215–23. doi:10.1016/j.jenvman.2006.09.009.
  • Azamathulla, H. M. 2012. Gene-expression programming to predict scour at a bridge abutment. Journal of Hydroinformatics 14 (2):324–31. doi:10.2166/hydro.2011.135.
  • Azamathulla, H. M., A. Ab Ghani, N. A. Zakaria, S. H. Lai, C. K. Chang, C. S. Leow, and Z. Abuhasan. 2008. Genetic programming to predict ski-jump bucket spill-way scour. Journal of Hydrodynamics 20 (4):477–84. doi:10.1016/S1001-6058(08)60083-9.
  • Azimi, H., H. Bonakdari, I. Ebtehaj, B. Gharabaghi, and F. Khoshbin. 2017. Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length. Acta Mechanica 1–18. doi:10.1007/s00707-017-2043-9
  • Azimi, H., H. Bonakdari, I. Ebtehaj, and D. G. Michelson. 2016. A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed. Neural Computing and Applications 1–10. doi:10.1007/s00521-016-2560-9.
  • Balouchi, B., M. R. Nikoo, and J. Adamowski. 2015. Development of expert systems for the prediction of scour depth under live-bed conditions at river confluences: Application of different types of ANNs and the M5P model tree. Applied Soft Computing 34:51–59. doi:10.1016/j.asoc.2015.04.040.
  • Barbhuiya, A. K., and S. Dey. 2004. Local scour at abutments: A review. Sādhanā 29 (5):449–76.
  • Benediktsson, J. A., P. H. Swain, and O. K. Ersoy. 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing 28:540–52. doi:10.1109/TGRS.1990.572944.
  • Bernard, J. A. 1988. Use of a rule-based system for process control. IEEE Control Systems Magazine 8 (5):3–13. doi:10.1109/37.7735.
  • Bezdek, J. C., R. Ehrlich, and W. Full. 1984. FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences 10 (2–3):191–203. doi:10.1016/0098-3004(84)90020-7.
  • Breusers, H. N. C., G. Nicollet, and H. W. Shen. 1977. Local scour around cylindrical piers. Journal of Hydraulic Research 15 (3):211–52. doi:10.1080/00221687709499645.
  • Cai, W., S. Chen, and D. Zhang. 2007. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition 40 (3):825–38. doi:10.1016/j.patcog.2006.07.011.
  • Cardoso, A. H., and R. Bettess. 1999. Effects of time and channel geometry on scour at bridge abutments. Journal of Hydraulic Engineering 125 (4):388–99. doi:10.1061/(asce)0733-9429(1999)125:4(388)
  • Cheng, M. Y., M. T. Cao, and Y. W. Wu. 2014. Predicting equilibrium scour depth at bridge piers using evolutionary radial basis function neural network. Journal of Computing in Civil Engineering 29 (5):04014070. doi:10.1061/(ASCE)CP.1943-5487.0000380.
  • Cobaner, M. 2011. Evapotranspiration estimation by two different neuro-fuzzy inference systems. Journal of Hydrology 398 (3):292–302. doi:10.1016/j.jhydrol.2010.12.030.
  • Dey, S., and A. K. Barbhuiya. 2005. Time variation of scour at abutments. Journal of Hydraulic Engineering 131 (1):11–23. doi:10.1061/(ASCE)0733-9429(2005)131:1(11).
  • Dey, S., S. K. Bose, and G. L. N. Sastry. 1995. Clear water scour at circular piers: A model. Journal of Hydraulic Engineering 121 (12):869–76. doi:10.1061/(ASCE)0733-9429(1995)121:12(869).
  • Dunn, J. C. 1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3 (3):32–57. doi:10.1080/01969727308546046.
  • Ebtehaj, I., and H. Bonakdari. 2014. Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers. Water Resources Management 28 (13):4765–79. doi:10.1007/s11269-014-0774-0.
  • Ebtehaj, I., and H. Bonakdari. 2017. Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport. Applied Water Science 7:4287–99. doi:10.1007/s13201-017-0562-0.
  • Ebtehaj, I., H. Bonakdari, and B. Gharabaghi. 2017. Development of more accurate discharge coefficient prediction equations for rectangular side weirs using adaptive neuro-fuzzy inference system and generalized group method of data handling. Measurement 116:473–82. doi:10.1016/j.measurement.2017.11.023.
  • Ebtehaj, I., H. Bonakdari, and F. Khoshbin. 2016. Evolutionary design of a generalized polynomial neural network for modelling sediment transport in clean pipes. Engineering Optimization 48 (10):1793–807. doi:10.1080/0305215X.2015.1137567.
  • Ebtehaj, I., H. Bonakdari, and S. Shamshirband. 2016. Extreme learning machine assessment for estimating sediment transport in open channels. Engineering with Computers 32 (4):691–704. doi:10.1007/s00366-016-0446-1.
  • Ebtehaj, I., A. M. Sattar, H. Bonakdari, and A. H. Zaji. 2017. Prediction of scour depth around bridge piers using self-adaptive extreme learning machine. Journal of Hydroinformatics 19 (2):207–24. doi:10.2166/hydro.2016.025.
  • Ettema, R., B. W. Melville, and B. Barkdoll. 1998. Scale effect in pier-scour experiments. Journal of Hydraulic Engineering 124 (6):639–42. doi:10.1061/(ASCE)0733-9429(1999)125:8(894).
  • Firat, M., and M. Gungor. 2009. Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Advances in Engineering Software 40 (8):731–37. doi:10.1016/j.advengsoft.2008.12.001.
  • Froehlich, D. C. 1989. Local scour at bridge abutments. Proceedings of the 1989 National Conference on Hydraulic Engineering, August 1, New Orleans, USA, 13–18.
  • Garde, R. J., K. Subramanya, and K. D. Nambudripad. 1961. Study of scour around spur-dikes. Journal of the Hydraulics Division 87:23–37.
  • Ghazanfari-Hashemi, S., A. Etemad-Shahidi, M. H. Kazeminezhad, and A. R. Mansoori. 2011. Prediction of pile group scour in waves using support vector machines and ANN. Journal of Hydroinformatics 13 (4):609–20. doi:10.2166/hydro.2010.107.
  • Ghazvinei, T. P., J. Ariffin, T. A. Mohamad, A. Amini, M. Aghajani, S. Saheri, and S. Ansarimoghaddam. 2015. Contraction scour analysis at protruding bridge abutments. ICE-Bridge Engineering 169 (1):39–53. doi:10.1680/bren.14.00011.
  • Ghazvinei, P. T., H. H. Darvishi, J. Ariffin, S. M. Jahromi, N. Aghamohammadi, and A. Amini. 2017. MTP validation analysis of scour formulae in an integral abutment bridge. KSCE Journal of Civil Engineering 21 (3):1009–21. doi:10.1007/s12205-016-0181-6.
  • Gholami, A., H. Bonakdari, I. Ebtehaj, S. Shaghaghi, and F. Khoshbin. 2016. Developing an expert group method of data handling system for predicting the geometry of a stable channel with a gravel bed. Earth Surface Processes and Landforms 42:1460–1471. doi:10.1002/esp.4104.
  • Hiremath, S. M., S. K. Patra, and A. K. Mishra. 2012. ANFIS with subtractive clustering-based extended data rate prediction for cognitive radio. 5th International Conference on Computers and Devices for Communication-CODEC-2012 December 17–19, 2012, Kolkata, India.
  • Hosseini, K., H. Karami, H. Hosseinjanzadeh, and A. Ardeshir. 2016. Prediction of time-varying maximum scour depth around short abutments using soft computing methodologies – A comparative study. KSCE Journal of Civil Engineering 20 (5):2070–81. doi:10.1007/s12205-015-0115-8.
  • Hu, Y. C. 2007. Sugeno fuzzy integral for finding fuzzy if–then classification rules. Applied Mathematics and Computation 185 (1):72–83. doi:10.1016/j.amc.2006.07.010.
  • Jang, J. S. 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3):665–85. doi:10.1109/21.256541.
  • Jang, J. S. R., C. T. Sun, and E. Mizutani. 1997. Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence.
  • Kandasamy, I. K. 1989. Aubtment scour. Rep. No. 458, School of Engineering, The University of Auckland, New Zealand.
  • Khoshbin, F., H. Bonakdari, S. H. Ashraf Talesh, I. Ebtehaj, A. H. Zaji, and H. Azimi. 2016. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Engineering Optimization 48 (6):933–48. doi:10.1080/0305215X.2015.1071807.
  • Khwairakpam, P., S. S. Ray, S. Das, R. Das, and A. Mazumdar. 2012. Scour hole characteristics around a vertical pier under clear water scour conditions. ARPN Journal of Engineering and Applied Sciences 7 (6):649–54.
  • Kim, J., and N. Kasabov. 1999. HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems. Neural Networks 12 (9):1301–19. doi:10.1016/S0893-6080(99)00067-2.
  • Kisi, O., S. Karimi, J. Shiri, O. Makarynskyy, and H. Yoon. 2014. Forecasting sea water levels at Mukho Station, South Korea using soft computing techniques. The International Journal of Ocean and Climate Systems 5 (4):175–88. doi:10.1260/1759-3131.5.4.175.
  • Kisi, O., and J. Shiri. 2012. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Computers & Geosciences 43:73–82. doi:10.1016/j.cageo.2012.02.007.
  • Kisi, O., and M. Zounemat-Kermani. 2016. Suspended sediment modeling using neuro-fuzzy embedded fuzzy c-means clustering technique. Water Resources Management 30 (11):3979–94. doi:10.1007/s11269-016-1405-8.
  • Li, F., J. Han, and C. Lin. 2013. Effect of scour on the behavior of laterally loaded single piles in marine clay. Marine Georesources & Geotechnology 31 (3):271–89. doi:10.1080/1064119X.2012.676157.
  • Liang, F., C. Wang, M. Huang, and Y. Wang. 2017. Experimental observations and evaluations of formulae for local scour at pile groups in steady currents. Marine Georesources & Geotechnology 35 (2):245–55. doi:10.1080/1064119X.2016.1147510.
  • Lin, C. T., C. J. Lin, and C. G. Lee. 1995. Fuzzy adaptive learning control network with on-line neural learning. Fuzzy Sets and Systems 71 (1):25–45. doi:10.1016/0165-0114(94)00195-D.
  • Mendel, J. M. 2001. Uncertain rule-based fuzzy logic systems: Introduction and new directions. Upper Saddle River: Prentice Hall PTR.
  • Melville, B. W. 1992. Local scour at bridge abutments. Journal of Hydraulic Engineering 118 (4):615–31. doi:10.1061/(ASCE)0733-9429(1992)118:4(615).
  • Melville, B. W. 1997. Pier and abutment scour: Integrated approach. Journal of Hydraulic Engineering 123 (2):125–36. doi:10.1061/(ASCE)0733-9429(1997)123:2(125)
  • Mohammadpour, R., A. A. Ghani, and H. M. Azamathulla. 2013. Estimation of dimension and time variation of local scour at short abutment. International Journal of River Basin Management 11 (1):121–35. doi:10.1080/15715124.2013.772522.
  • Muzzammil, M. 2010. ANFIS approach to the scour depth prediction at a bridge abutment. Journal of Hydroinformatics 12 (4):474–85. doi:10.2166/hydro.2010.004.
  • Najafzadeh, M., G. A. Barani, and M. R. Hessami Kermani. 2013. GMDH based back propagation algorithm to predict abutment scour in cohesive soils. Ocean Engineering 59:100–06. doi:10.1016/j.oceaneng.2012.12.006.
  • Najafzadeh, M., M. Rezaie Balf, and E. Rashedi. 2016. Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. Journal of Hydroinformatics 18 (5):867–84. doi:10.2166/hydro.2016.212.
  • Najafzadeh, M., J. Shiri, and M. Rezaie-Balf. 2017. New expression-based models to estimate scour depth at clear water conditions in rectangular channels. Marine Georesources & Geotechnology 36:227–35. doi:10.1080/1064119X.2017.1303009.
  • Park, C. W., H. I. Park, and Y. K. Cho. 2017. Evaluation of the applicability of pier local scour formulae using laboratory and field data. Marine Georesources & Geotechnology 35 (1):1–7. doi:10.1080/1064119X.2014.954658.
  • Richardson, E. V., L. J. Harrison, J. R. Richardson, and S. R. Davies. 1993. Evaluating scour at bridges. Publ. FHWA-IP-90–017, Federal Highway Administration, US Department of Transportation, Washington, DC.
  • Sanikhani, H., and O. Kisi. 2012. River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resources Management 26 (6):1715–29. doi:1007/s11269-012-9982-7.
  • Sarlak, N., and S. Tigrek. 2011. Analysis of experimental data sets for local scour depth around bridge abutments using artificial neural networks. Water SA 37 (4):595–602.
  • Shamshirband, S., H. Bonakdari, A. H. Zaji, D. Petkovic, and S. Motamedi. 2016. Improved side weir discharge coefficient modeling by adaptive neuro-fuzzy methodology. KSCE Journal of Civil Engineering 20 (7):2999–3005. doi:10.1007/s12205-016-1723-7.
  • Sharafi, H., I. Ebtehaj, H. Bonakdari, and A. H. Zaji. 2016. Design of a support vector machine with different kernel functions to predict scour depth around bridge piers. Natural Hazards 84 (3):2145–62. doi:10.1007/s11069-016-2540-5.
  • Sheppard, D. M., M. Odeh, and T. Glasser. 2004. Large scale clear-water local pier scour experiments. Journal of Hydraulic Engineering 130 (10):957–63. doi:10.1061/(ASCE)0733-9429(2004)130:10(957).
  • Shin, J. H., and H. I. Park. 2010. Neural network formula for local scour at piers using field data. Marine Georesources and Geotechnology 28 (1):37–48. doi:10.1080/10641190903263054.
  • Shiri, J., S. Shamshirband, O. Kisi, S. Karimi, S. M. Bateni, S. H. Hosseini Nezhad, and A. Hashemi. 2016. Prediction of water-level in the Urmia Lake using the extreme learning machine approach. Water Resources Management 30 (14):5217–29. doi:10.1007/s11269-016-1480-x.
  • Shirole, A. M., and R. C. Holt. 1991. Planning for a comprehensive bridge safety assurance program. Transportation Research Record 1290.
  • Takagi, T., and M. Sugeno. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 1:116–32. doi:10.1109/TSMC.1985.6313399.
  • Toth, E., and L. Brandimarte. 2011. Prediction of local scour depth at bridge piers under clear-water and live-bed conditions: Comparison of literature formulae and artificial neural networks. Journal of Hydroinformatics 13 (4):812–24. doi:10.2166/hydro.2011.065.
  • Yanmaz, A. M., and O. Kose. 2007. Time-wise variation of scouring at bridge abutments. Sadhana 32 (3):199–213. doi:10.1007/s12046-007-0018-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.