339
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

A new approach to predict the compression index using artificial intelligence methods

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 704-720 | Received 22 Feb 2018, Accepted 18 May 2018, Published online: 10 Oct 2018

References

  • Abdrabbo, F. M., and M. A. Mahmoud. 1990. Correlations between Index Tests and Compressibility of Egyptian Clays. Soils and Foundations 30 (2): 128–132. doi:10.3208/sandf1972.30.2_128.
  • Ahadiyan, J., J. R. Ebne, and M. S. Bajestan. 2008. Prediction Determination of Soil Compression Index, cc. Ahwaz Region. Journal of Faculty of Engineering 35 (3): 75–80.
  • Alam, S., S. Khuntia, and C. Patra. 2014. Prediction of Compression Index of Clay Using Artificial Neural Network. Paper presented at the Proceeding of Industrial Engineering Science and Applications, NIT Durgapur, India, April 2.
  • Alavi, A. H., A. H. Gandomi, A. Mollahasani, and J. B. Bazaz. 2013. Linear and tree-based genetic programming for solving geotechnical engineering problems. In Metaheuristics in Water, Geotechnical and Transport Engineering, ed. Y. Xin-She, Y. A. Gandomi, S. Talatahari and A. Alavi, 289–310. Amsterdam, Netherlands: Elsevier. doi:10.1016/B978-0-12-398296-4.00012-X.
  • Alavi, A. H., A. H. Gandomi, M. G. Sahab, and M. Gandomi. 2010. Multi Expression Programming: A New Approach to Formulation of Soil Classification. Engineering with Computers 26 (2): 111–118. doi:10.1007/s00366-009-0140-7.
  • Alavi, A., and A. H. Gandomi. 2011. A Robust Data Mining Approach for Formulation of Geotechnical Engineering Systems. Engineering Computations 28 (3): 242–274. doi:10.1108/02644401111118132.
  • Al-Khafaji, A. W. N., and O. B. Andersland. 1992. Equations for Compression Index Approximation. Journal of Geotechnical Engineering 118 (1): 148–153. doi:10.1061/(ASCE)0733-9410(1992)118:1(148).
  • Ameratunga, J., N. Sivakugan, and B. M. Das. 2016. Correlations of Soil and Rock Properties in Geotechnical Engineering. Developments in Geotechnical Engineering. New Delhi: Springer India. doi:10.1007/978-81-322-2629-1.
  • Azzouz, A. S., R. J. KRIzEk, and R. B. CoRoTis. 1976. Regression Analysis of Soil Compressibility. Soils and Foundations 16 (2): 19–29. doi:10.3208/sandf1972.16.2_19.
  • Benbouras, M. A., R. M. Kettab, H. Zedira, A.-I. Petrisor, and F. Debiche. 2017. Dry Density in Relation to Other Geotechnical Proprieties of Algiers Clay. The Journal of the Doctoral School of Urban Planning 2 (1): 5–14.
  • Benbouras, M. A., R. M. Kettab, H. Zedira, F. Debiche, and N. Zaidi. 2018. Comparing Nonlinear Regression Analysis and Artificial Neural Networks to Predict Geotechnical Parameters from Standard Penetration Test. Urbanism. Arhitectură. Construcţii 9 (3): 275–288.
  • Boadu, F. K., F. Owusu-Nimo, F. Achampong, and S. I. Ampadu. 2013. Artificial Neural Network and Statistical Models for Predicting the Basic Geotechnical Properties of Soils from Electrical Measurements. Near Surface Geophysics 11 (1994): 6–599. (612. doi:10.3997/1873-0604.2013011.
  • Bowles, J. E. 1979. Physical and Geotechnical Properties of Soils. New York, USA: McGraw-Hill Book Company.
  • Breiman, L., and P. Spector. 1992. Submodel selection and Evaluation in Regression. The X-Random Case. International Statistical Review/Revue Internationale De Statistique 60 (3): 291–319. doi:10.2307/1403680.
  • Cai, G., S. Liu, A. J. Puppala, and L. Tong. 2015. Identification of Soil Strata Based on General Regression Neural Network Model from CPTU Data. Marine Georesources & Geotechnology 33 (3): 229–238. doi:10.1080/1064119X.2013.843046.
  • Chok, Y. H., M. B. Jaksa, W. S. Kaggwa, D. V. Griffiths, and G. A. Fenton. 2016. Neural Network Prediction of the Reliability of Heterogeneous Cohesive Slopes. International Journal for Numerical and Analytical Methods in Geomechanics 40 (11): 1556–1569. doi:10.1002/nag.2496.
  • Cozzolino, V. M. 1961. Statistical forecasting of compression index. Paper presented at the fifth international conference on soil mechanics and foundation engineering, Paris, France.
  • Dysli, M., and W. Steiner. 2013. Correlations in Soil Mechanics. Lausanne, Switzerland: Presses polytechniques et universitaires romandes.
  • Elyasaf, A., and M. Sipper. 2014. Software Review: The HeuristicLab Framework. Genetic Programming and Evolvable Machines 15 (2): 215–218. doi:10.1007/s10710-014-9214-4.
  • Gunduz, Z., and H. Arman. 2007. Possible Relationships between Compression and Recompression Indices of a Low-Plasticity Clayey Soil. Arabian Journal for Science and Engineering 32 (2): 179–190.
  • Harini, H., and S. Naagesh. 2014. Predicting CBR of Fine Grained Soils by Artificial Neural Network and Multiple Linear Regression. International Journal of Civil Engineering 5 (2): 119–126.
  • Hough, B. K. 1957. Basic Soils Engineering. New York: Ronald Press Company.
  • JICA (Agence Japonaise de Coopération Internationale) 2006. Étude de Microzonage Sismique de la Wilaya d’Alger République Algérienne Démocratique et Populaire [Study of Seismic Microzoning of the Algiers Wilaya, Democratic People's Republic of Algeria]. Japan: Oyo International Corp, (Vol IV).
  • Kanellopoulos, I., and G. G. Wilkinson. 1997. Strategies and Best Practice for Neural Network Image Classification. International Journal of Remote Sensing 18 (4): 711–725. doi:10.1080/014311697218719.
  • Kang, X., S. Onyejekwe, L. Ge, and R. Stephenson. 2011. Spatial Variation and Correlation between Undrained Shear Strength and Plasticity Index. Geotechnical Special Publication, ASCE. Geo-Frontiers 2011: 2631–2019. doi:10.1061/41165(397)269.
  • Kayadelen, C., O. Günaydın, M. Fener, A. Demir, and A. Özvan. 2009. Modeling of the Angle of Shearing Resistance of Soils Using Soft Computing Systems. Expert Systems with Applications 36 (9): 11814–11826. doi:10.1016/j.eswa.2009.04.008.
  • Kim, Y.-T., and T.-H. Do. 2011. Experimental Evaluation of Leaching Effects on the Compressibility of Marine Clay and Its Strain Rate Dependency. Marine Georesources and Geotechnology 29 (1): 16–29. doi:10.1080/1064119X.2010.514239.
  • Koppula, S. D. 1981. Statistical Estimation of Compression Index. Geotechnical Testing Journal 4 (2): 68–73. doi:10.1520/GTJ10768J.
  • Koza, J. R. 1992. Genetic Programming II, Automatic Discovery of Reusable Subprograms. Cambridge, MA: MIT Press. doi:10.1162/artl.1994.1.4.439.
  • Kumar, V. P., and C. S. Rani. 2011. Prediction of Compression Index of Soils Using Artificial Neural Networks (ANNs). International Journal of Engineering Research and Applications 1 (4): 1554–1558.
  • Kurnaz, T. F., U. Dagdeviren, M. Yildiz, and O. Ozkan. 2016. Prediction of Compressibility Parameters of the Soils Using Artificial Neural Network. SpringerPlus 5 (1): 1801. doi:10.1186/s40064-016-3494-5.
  • MathWorks. 2018. Multilayer Neural Network Architecture – MATLAB & Simulink. Accessed February 16. https://www.mathworks.com/help/nnet/ug/multilayer-neural-network-architecture.html.
  • Muduli, P. K., M. R. Das, P. Samui, and S. Kumar Das. 2013. Uplift Capacity of Suction Caisson in Clay Using Artificial Intelligence Techniques. Marine Georesources & Geotechnology 31 (4): 375–390. doi:10.1080/1064119X.2012.690827.
  • Nagaraj, T. S., and B. R. Srinivasa Murthy. 1986. A Critical Reappraisal of Compression Index Equations. Geotechnique 36 (1): 27–32. doi:10.1680/geot.1986.36.1.27.
  • Nagaraj, T. S., N. S. Pandian, P. S. R. Narasimha Raju, and T. Vishnu Bhushan. 1995. Stress-state-time-permeability relationships for saturated soils.Paper presented at the International Symposium on Compression and Consolidation of Clayey Soils, May 10–12.
  • Namdarvand, F., A. Jafarnejadi, and G. Sayyad. 2013. Estimation of Soil Compression Coefficient Using Artificial Neural Network and Multiple Regressions. International Research Journal of Applied and Basic Sciences 4 (10): 3232–3236.
  • Narendra, B. S., P. V. Sivapullaiah, S. Suresh, and S. N. Omkar. 2006. Prediction of Unconfined Compressive Strength of Soft Grounds Using Computational Intelligence Techniques: A Comparative Study. Computers and Geotechnics 33 (3): 196–208. doi:10.1016/j.compgeo.2006.03.006.
  • Nishida, Y. 1956. A Brief Note on Compression Index of Soil. Journal of the Soil Mechanics and Foundations Division 82 (3): 1–14.
  • Normalisation francaise XP P 94-011.1999.Sols: Reconnaissance et Essais-Description. Identification. Dénomination Des Sols-Terminologie [Recognition and Testing-Description. Identification. Soil name-Terminology], Parie: AFNOR.
  • Onyejekwe, S., X. Kang, and L. Ge. 2016. Evaluation of the Scale of Fluctuation of Geotechnical Parameters by Autocorrelation Function and Semivariogram Function. Engineering Geology 214 :43–49. doi:10.1016/j.enggeo.2016.09.014.
  • Onyejekwe, S., X. Kang, and L. Ge. 2015. Assessment of Empirical Equations for the Compression Index of Fine-Grained Soils in Missouri. Bulletin of Engineering Geology and the Environment 74 (3): 705–716. doi:10.1007/s10064-014-0659-8.
  • Oommen, T., and L. G. Baise. 2010. Model Development and Validation for Intelligent Data Collection for Lateral Spread Displacements. Journal of Computing in Civil Engineering 24 (6): 467–477. doi:10.1061/(ASCE)CP.1943-5487.0000050.
  • Ozer, M., N. S. Isik, and M. Orhan. 2008. Statistical and Neural Network Assessment of the Compression Index of Clay-Bearing Soils. Bulletin of Engineering Geology and the Environment 67 (4): 537–545. doi:10.1007/s10064-008-0168-8.
  • Park, H. I. 2011. Development of Neural Network Model to Estimate the Permeability Coefficient of Soils. Marine Georesources & Geotechnology 29 (4): 267–278. doi:10.1080/1064119X.2011.554963.
  • Park, H. I. 2011. Study for Application of Artificial Neural Networks in Geotechnical Problems. INTECH Open. doi:10.5772/15011.
  • Park, H. I., and C. W. Cho. 2010. Neural Network Model for Predicting the Resistance of Driven Piles. Marine Georesources and Geotechnology 28 (4): 324–344. doi:10.1080/1064119X.2010.514232.
  • Park, H. I., and S. R. Lee. 2011. Evaluation of the Compression Index of Soils Using an Artificial Neural Network. Computers and Geotechnics 38 (4): 472–481. doi:10.1016/j.compgeo.2011.02.011.
  • Kulhawy, F. H., and P. W. Mayne. 1990. Manual on Estimating Soil Properties for Foundation Design. Report EL-6800, Electric Power Research Inst., Palo Alto, California, USA.
  • Rendon-Herrero, O. 1980. Universal Compression Index Equation. Journal of Geotechnical Engineering 109 (5): 755–1200. doi:10.1061/(ASCE)0733-9410(1983)109:5(755).
  • Rezania, M., and A. A. Javadi. 2007. A New Genetic Programming Model for Predicting Settlement of Shallow Foundations. Canadian Geotechnical Journal 44 (12): 1462–1473. doi:10.1139/T07-063.
  • Sadok, A., R. Zentar, and N.-E. Abriak. 2016. Genetic Programming for Granular Compactness Modelling. European Journal of Environmental and Civil Engineering 20 (10): 1249–1261. doi:10.1080/19648189.2016.1150901.
  • Shahabian, F., S. M. Elachachi, and D. Breysse. 2014. Efficiency of Neural Networks for Estimating the Patch Load Resistance of Plate Girders with a Focus on Uncertainties in Material and Geometrical Properties. Civil Engineering Infrastructures Journal 47 (1): 29–42. doi:10.7508/CEIJ.2014.01.003.
  • Shahin, M. A., M. B. Jaksa, and H. R. Maier. 2001. Artificial Neural Network Applications in Geotechnical Engineering. Australian Geomechanics 36 (1): 49–62.
  • Shahin, M. A., M. B. Jaksa, and H. R. Maier. 2008. State of the Art of Artificial Neural Networks in Geotechnical Engineering. Electronic Journal of Geotechnical Engineering 8 (1): 1–26. doi:10.1.1.513.3370.
  • Shahin, M. A., M. B. Jaksa, and H. R. Maier. 2009. Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications. Advances in Artificial Neural Systems 1–9. doi:10.1155/2009/308239.
  • Shahin, M. A. 2015. Genetic Programming for Modelling of Geotechnical Engineering Systems. in Handbook of Genetic Programming Applications., ed. A. H. Gandomi, A. H. Alavi, C. Ryan, 37–57. Cham: Springer. doi:10.1007/978-3-319-20883-1-2.
  • Shin, J. H., and H. I. Park. 2010. Neural Network Formula for Local Scour at Piers Using Field Data. Marine Georesources and Geotechnology 28 (1): 37–48. doi:10.1080/10641190903263054.
  • Shorten, G. G. 1995. Quasi-overconsolidation and Creep Phenomena in Shallow Marine and Estuarine Organo-calcareous Silts, Fiji. Canadian Geotechnical Journal 32 (1): 89–105. doi:10.1139/t95-007.
  • Skempton, A. W., and O. T. Jones. 1944. Notes on the Compressibility of Clays. Quarterly Journal of the Geological Society 100 (1-4): 119–135. doi:10.1144/GSL.JGS.1944.100.01-04.08.
  • Smith, G. N. 1986. Probability and Statistics in Civil Engineering. London, England: Collins Professional and Technical Books.
  • Solanki, C. H., and M. D. Desai. 2008. Preconsolidation Pressure from Soil Index and Plasticity Properties. Paper presented at the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, India, October 1–6.
  • Sower, G. B., and G. F. Sower. 1970. Introductory Soil Mechanics and Foundations, 3rd ed. London: The Macmillan Company of Collier-Macmillan Ltd.
  • Sridharan, A., and H. B. Nagaraj. 2000. Compressibility Behaviour of Remoulded, Fine-Grained Soils and Correlation with Index Properties. Canadian Geotechnical Journal 37 (3): 712–722. doi:10.1139/t99-128.
  • Terzaghi, K., R. B. Peck, and G. Mesri. 1996. Soil Mechanics in Engineering Practice. New York, USA: John Wiley & Sons. doi:10.1086/627371.
  • Tsuchida, T. 1991. A new Concept of E-logp Relationship for Clays. In Proceedings of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Bangkok, Thailand 87–90.
  • USACE. 1990. Engineering and Design-Settlement Analysis. Department of the Army, US Army Corps of Engineers.
  • Wroth, C. P., and D. M. Wood. 1978. The Correlation of Index Properties with Some Basic Engineering Properties of Soils. Canadian Geotechnical Journal 15 (2): 137–145. doi:10.1139/t78-014.
  • Yoon, G. L., and B. T. Kim. 2006. Regression Analysis of Compression Index for Kwangyang Marine Clay. KSCE Journal of Civil Engineering 10 (6): 415–418. doi:10.1007/BF02823980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.