131
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Mafic-hosted seafloor sulfide mineralization at the margin of a non-transform discontinuity on the southern mid-Atlantic ridge

, , , &
Pages 727-738 | Received 21 Mar 2018, Accepted 01 Jun 2018, Published online: 25 Jul 2018

References

  • Alt, J. C. 1995. Subsurface Processes in Mid-ocean Ridge Hydrothermal Systems. Washington Dc American Geophysical Union Geophysical Monograph 91: 85–114.
  • Bortnikov, N., I. V. Vikentyev, V. N. Apollonov, O. V. Stavrova, and Y. A. Bogdanov. 2001. Rainbow Serpentinite-related Hydrothermal Field, Atlantic Mid-ocean Ridge, 36°14′N: Mineralogical and Geochemical Features. The Joint Sixth Biennial Sga-seg Meeting, Krakow, Poland. 29.
  • Bogdanov, Y., A. Sagalevitch, E. Chernyaev, A. Ashadze, E. Gurvich, V. Lukashin, G. Ivanov, and V. Peresypkin. 1995. A study of the hydrothermal field at 14°45′N on the Mid Atlantic Ridge using the MIR submersibles, Bridge News, 9–13.
  • Bortnikov, N. S., Vikent'Ev. I., and V. 2005. Modern Base Metal Sulfide Mineral Formation in the World Ocean. Geology of Ore Deposits 47 (1): 13–44.
  • Butler, I. B., A. E. Fallick, and R. W. Nesbitt. 1998. Mineralogy, Sulphur Isotope Geochemistry and the Development of Sulphide Structures at the Broken Spur Hydrothermal Vent Site, 29° 10'n, Mid-Atlantic Ridge. Journal of the Geological Society 155 (5): 773–85. doi:10.1144/gsjgs.155.5.0773.
  • Chiba, H., N. Uchiyama, D. A. H. Teagle. 1998. Stable Isotope Study of Anhydrite and Sulfide Minerals at the TAG Hydrothermal Mound, Mid-Atlantic Ridge. Proceedings of the Ocean Drilling Program, Scientific Results. 158: 85–90
  • Demets, C., R. G. Gordon, and D. F. Argus. 2010. Geologically Current Plate Motions. Geophysical Journal International 181 (1): 1–80.
  • Dias, Á. S., G. L. Früh-Green, S. M. Bernasconi, and F. J. A. S. Barriga. 2011. Geochemistry and Stable Isotope Constraints on High-temperature Activity from Sediment Cores of the Saldanha Hydrothermal Field. Marine Geology 279 (1–4): 128–140. doi:10.1016/j.margeo.2010.10.017.
  • Fouquet, Y. 1997. Where are the Large Hydrothermal Sulphide Deposits in the Oceans? Communities and Technologies. Springer: the Netherlands 35 (9–12): 307–325.
  • Fouquet, Y. 1998. Flores Diving Cruise with the Nautile Near the Azores – First Dives on the Rainbow Field: Hydrothermal Seawater/Mantle Interaction. Blood 92 (10): 3887–3897.
  • Fouquet, Y., P. Cambon, J. Etoubleau, J. L. Charlou, G., Cherkashov, et al. 2010. Geodiversity of Hydrothermal Processes along the mid-Atlantic Ridge and Ultramafic-hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit. American Geophysical Union 188: 321–367.
  • German, C. 2009. Export fluxes from submarine venting to the ocean: A synthesis of results from the Rainbow hydrothermal field, 36°N MAR. Goldschmidt Conference Abstracts. A428.
  • Gràcia, E., D. Bideau, R. Hekinian, Y. Lagabrielle, and L. M. Parson. 1997. Along-axis Magmatic Oscillations and Exposure of Ultramafic Rocks in a Second-order Segment of the Mid-Atlantic Ridge (33°43′N to 34°07′N). Geology 25 (12): 1059. doi:10.1130/0091-7613(1997)025<1059:AAMOAE>2.3.CO;2.
  • Gràcia, E., J. L. Charlou, J. Radford-Knoery, and L. M. Parson. 2000. Non-transform Offsets Along the mid-Atlantic Ridge South of the Azores (38°N–34°N): Ultramafic Exposures and Hosting of Hydrothermal Vents. Earth and Planetary Science Letters 177 (1–2): 89–103. doi10.1016/S0012-821X(00)00034-0.
  • Grindlay, N. R., P. J. Fox, and K. C. Macdonald. 1991. Second-order Ridge Axis Discontinuities in the South Atlantic: Morphology, Structure and Evolution. Marine Geophysical Researches 13 (1): 21–49. doi:10.1007/BF02428194.
  • Grindlay, N. R., P. J. Fox, and P. R. Vogt. 1992. Morphology and Tectonics of the Mid-Atlantic Ridge (25°–27°30′S) from Sea Beam and Magnetic Data. Journal of Geophysical Research 97 (B5): 6983–7010. Solid Earth. doi:10.1029/91JB02981.
  • Hannington, M., P. Herzig, S. Scott, G. Thompson, and P. Rona. 1991. Comparative Mineralogy and Geochemistry of Gold-bearing Sulfide Deposits on the mid-Ocean Ridges. Marine Geology 101 (1–4): 217–48. doi:10.1016/0025-3227(91)90073-D.
  • Hannington, M. D., A. Galley, G. P. M. and Gerzig, S. Petersen. 1998. Comparison of the Tag Mound and Stockwork Complex with Cyprus-type Massive Sulfide Deposits. Proceedings of the Ocean Drilling Program Scientific Results 158: 389–415. doi:10.2973/odp.proc.sr.158.217.1998.
  • Kase, K., M. Yamamoto, and T. Shibata. 1990. Copper-rich Sulfide Deposit Near 23°n, Mid-Atlantic Ridge: Chemical Composition, Mineral Chemistry, and Sulfur Isotopes 1. Acta Stomatologica Croatica 20 (20): 141–6. doi:10.2973/odp.proc.sr.106109.139.1990.
  • Knott, R. 1995. Hydrothermal diagenesis thesis. Ph.D., 313 pp., University of Wales, Cardiff.
  • Koschinsky, A., C. Devey, D. Garbeschönberg, C. German, D. Yoerger, and T. Shank. 2006. Hydrothermal Exploration of the Mid-Atlantic Ridge, 5–10°S, using the AUV ABE and the ROV Quest, a brief overview of RV Meteor Cruise M68/1. (Vol.-1). AGU Fall Meeting Abstracts.
  • Lein, A. Y., G. A. Cherkashev, A. A. Ul’ Yanov, N. V. Ul’ Yanova, T. V. Stepanova, A. M. Sagalevich, Y. A. Bogdanov, E. G. Gurvich, and A. P. Torokhov. 2003. Mineralogy and Geochemistry of Sulfide Ores from the Logatchev-2 and Rainbow Fields: Similar and Distinctive Features. Geochemistry International 41 (3): 271–294.
  • Lein, A., Ul'Yanova, Y. N. V. Ul'Yanov, A. A. Cherkashov, G. A. Stepanova. T., and V. 2001. (Table 11) Isotopic composition of sulfide sulfur from the rainbow hydrothermal field. doi:10.2205/2001ES000068.
  • Li, B., X. Shi, C. Li, J. Wang, Y. Pei, and J. Ye. 2016. Lead, Sulfur, and Oxygen Isotope Systematics in Hydrothermal Precipitates from the 14°S Hydrothermal Field, South mid‐Atlantic Ridge. Resource Geology 66 (3): 274–285. doi:10.1111/rge.12101.
  • Li, B., X. Shi, J. Wang, Q. Yan, and C. Liu. 2018. Tectonic Environments and Local Geologic Controls of Potential Hydrothermal Fields Along the Southern mid-Atlantic Ridge (12–14°S). Journal of Marine Systems 181: 1–13. doi:10.1016/j.jmarsys.2018.02.003.
  • Marques, A. F. A., F. J. A. S. Barriga, and Y. Fouquet. 2003. Co:Ni Ratio Variation Throughout the Rainbow Hydrothermal System. In: Eliopoulos DG. (eds) Mineral exploration and sustainable development. Proceedings of the seventh biennial SGA meeting. Athens, Greece, 24–28 August 2003. Millpress, Rotterdam, 143–146.
  • Marques, A. F. A., F. Barriga, V. Chavagnac, and Y. Fouquet. 2006. Mineralogy, Geochemistry, and ND Isotope Composition of the Rainbow Hydrothermal Field, mid-Atlantic Ridge. Mineralium Deposita 41 (1): 52. doi:10.1007/s00126-005-0040-8.
  • Marques, A. F. A., F. J. A. S. Barriga, and S. D. Scott. 2007. Sulfide Mineralization in an Ultramafic-rock Hosted Seafloor Hydrothermal System: From Serpentinization to the Formation of Cu–Zn–(Co)-rich Massive Sulfides. Marine Geology 245 (1–4): 20–39. doi:10.1016/j.margeo.2007.05.007.
  • Melchert, B., C. W. Devey, C. R. German, K. S. Lackschewitz, R. Seifert, M. Walter, C. Mertens, D. R. Yoerger, E. T. Baker, H. Paulick, and K. Nakamura. 2008. First Evidence for High-temperature Off-axis Venting of Deep Crustal/Mantle Heat: The Nibelungen Hydrothermal Field, Southern mid-Atlantic Ridge. Earth and Planetary Science Letters 275 (1–2): 61–69. doi:10.1016/j.epsl.2008.08.010.
  • Melekestseva, I. Y., V. V. Zaykov, P. Nimis, G. A. Tret'Yakov, and S. G. Tessalina. 2013. Cu–(ni–co–au)-bearing Massive Sulfide Deposits Associated with Mafic–ultramafic Rocks of the Main Urals Fault, South Urals: Geological Structures, Ore Textural and Mineralogical Features, Comparison with Modern Analogs. Ore Geology Reviews 52: 18–36. doi:10.1016/j.oregeorev.2012.03.005.
  • Mitra, A., H. Elderfield, and M. J. Greaves. 1994. Rare Earth Elements in Submarine Hydrothermal Fluids and Plumes from the Mid-Atlantic Ridge. Marine Chemistry 46 (3): 217–235. doi:10.1016/0304-4203(94)90079-5.
  • Mozgova, N. N., N. V. Trubkin, Y. S. Borodaev, G. A. Cherkashev, T. V. Stepanova, T. A. Semkova, and T. Y. Uspenskaya. 2008. Massive Sulfides from the Ashadze Hydrothermal Field, 13°N, mid-Atlantic Ridge. Canadian Mineralogist 46 (3): 545–567. doi:10.3749/canmin.46.3.545.
  • Ohmoto, H., and R. O. Rye. 1979. Isotope of Sulfur and Carbon. In Geochemistry of hydrothermal ore deposits, 509–567. John Wiley & Sons.
  • Ohmoto, H., and A. C. Lasaga. 1982. Kinetics of Reactions Between Aqueous Sulfates and Sulfides in Hydrothermal Systems. Geochimica Et Cosmochimica Acta 46 (10): 1727–1745. doi:10.1016/0016-7037(82)90113-2.
  • Rouxel, O. D., Y. Fouquet, and J. N. Ludden. 2004. Subsurface Processes at the Lucky Strike Hydrothermal Field, Mid-Atlantic Ridge: Evidence from Sulfur, Selenium, and Iron Isotopes 1. Geochimica Et Cosmochimica Acta 68 (10): 2295–2311. doi:10.1016/j.gca.2003.11.029.
  • Rouxel, O. D., Y. Fouquet, and J. N. Ludden. 2004. Copper Isotope Systematics of the Lucky Strike, Rainbow, and Logatchev Sea-floor Hydrothermal Fields on the Mid-Atlantic Ridge. Economic Geology 99 (3): 585–600. doi:10.2113/99.3.585.
  • Sakai, H., D. J. Des Marais, A. Ueda, and J. G. Moore. 1984. Concentrations and Isotope Ratios of Carbon, Nitrogen and Sulfur in Ocean-floor Basalts. Geochimica Et Cosmochimica Acta 48: 2433–41. doi:10.1016/0016-7037(84)90295-3.
  • Schmidt, K., D. Garbe-Schönberg, A. Koschinsky, H. Strauss, C. L. Jost, V. Klevenz, and P. Königer. 2011. Fluid Elemental and Stable Isotope Composition of the Nibelungen Hydrothermal Field (8°18′S, mid-Atlantic Ridge): Constraints on Fluid–rock Interaction in Heterogeneous Lithosphere. Chemical Geology 280 (1–2): 1–18. doi:10.1016/j.chemgeo.2010.07.008.
  • Shanks, W. C., J. L. Bischoff, and R. J. Rosenbauer. 1981. Seawater Sulfate Reduction and Sulfur Isotope Fractionation in Basaltic Systems: Interaction of Seawater with Fayalite and Magnetite at 200–350 °c. Geochimica Et Cosmochimica Acta 45 (11): 1977–1995. doi:10.1016/0016-7037(81)90054-5.
  • Shanks, W. C., and W. E. Seyfried. 1987. Stable Isotope Studies of Vent Fluids and Chimney Minerals, Southern Juan de Fuca Ridge: Sodium Metasomatism and Seawater Sulfate Reduction. Journal of Geophysical Research: Solid Earth 92 (B11): 11387–11399. doi:10.1029/JB092iB11p11387.
  • Shanks, W. C. 2001. Stable Isotopes in Seafloor Hydrothermal Systems: Vent Fluids, Hydrothermal Deposits, Hydrothermal Alteration, and Microbial Processes. Reviews in Mineralogy & Geochemistry 43 (1): 469–525. doi:10.2138/gsrmg.43.1.469.
  • Smith, W. H. F., and D. T. Sandwell. 1997. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science 277 (5334): 1956–1962. doi:10.1126/science.277.5334.1956.
  • Spencer, S.,. Smith, D. K. Cann, J. R. J. Mcallister. L., and E. 1997. Structure and Stability of Non-transform Discontinuities on the mid-Atlantic Ridge Between 24° N and 30° N. Marine Geophysical Research 19 (4): 339–362. doi:10.1023/A:1004200411959.
  • Sun, S. S., and W. F. Mcdonough. 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society London Special Publications 42 (1): 313–345. doi:10.1144/GSL.SP.1989.042.01.19.
  • Sverjensky, D. A. 1984. Europium Redox Equilibria in Aqueous Solution. Earth and Planetary Science Letters 67 (1): 70–78. doi:10.1016/0012-821X(84)90039-6.
  • Wang, Y., X. Han, S. Petersen, X. Jin, Z. Qiu and J. J. Zhu. 2014. Mineralogy and Geochemistry of Hydrothermal Precipitates from Kairei Hydrothermal Field, Central Indian Ridge. Marine Geology 354 (3): 69–80. doi:10.1016/j.margeo.2014.05.003.
  • Woodruff, L. G., and W. C. Shanks. 1988. Sulfur Isotope Study of Chimney Minerals and Vent Fluids from 21°n, East Pacific Rise: Hydrothermal Sulfur Sources and Disequilibrium Sulfate Reduction. Journal of Geophysical Research: Solid Earth 93 (B5): 4562–4572. doi:10.1029/JB093iB05p04562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.