449
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Scour effects on bearing capacity of composite bucket foundation for offshore wind turbines

, , &
Pages 223-237 | Received 23 Oct 2018, Accepted 31 Dec 2018, Published online: 01 Feb 2019

References

  • Ding, H., J. Lian, A. Li, and P. Zhang. 2013. One-Step-Installation of Offshore Wind Turbine on Large-Scale Bucket-Top-Bearing Bucket Foundation. Transactions of Tianjin University 19 (3): 188–194. doi:10.1007/s12209-013-2099-0.
  • Ding, H., Y. Liu, P. Zhang, and C. Le. 2015. Model Tests on the Bearing Capacity of Wide-Shallow Composite Bucket Foundations for Offshore Wind Turbines in Clay. Ocean Engineering 103: 114–122.
  • Gerrard, J. H. 1966. The Mechanics of the Formation Region of Vortices Behind Bluff Bodies. Journal of Fluid Mechanics 25 (02): 401–413. doi:10.1017/S0022112066001721.
  • Han, H. Q. 2006. Research on Local Scour at Bridge Piers Under Tidal Current Action. Zhejiang: Zhejiang University.
  • Hu, R. Q., P. Y. Zhang, and H. Y. Ding. 2018. Numerical Analysis of Seepage Field of Bucket Foundations for Offshore Wind Turbines. Ships and Offshore Structures 13 (8): 1–13.
  • Jia, N., P. Zhang, Y. Liu, and H. Ding. 2018. Bearing Capacity of Composite Bucket Foundations for Offshore Wind Turbines in Silty Sand. Ocean Engineering 151: 1–11.
  • Junginger, M., A. Faaij, and W. C. Turkenburg. 2004. Cost Reduction Prospects for Offshore Wind Farms. Wind Engineering 28 (1): 97–118. doi:10.1260/0309524041210847.
  • Kishore, N. Y., S. N. Rao, and J. S. Mani. 2009. The Behavior of Laterally Loaded Pile Subjected to Scour in Marine Environment. KSCE Journal of Civil Engineering 13 (4): 403–408. doi:10.1007/s12205-009-0403-2.
  • Lian, J., H. Ding, P. Zhang, and R. Yu. 2012. Design of Large-Scale Prestressing Bucket Foundation for Offshore Wind Turbines. Transactions of Tianjin University 18 (2): 79–84. doi:10.1007/s12209-012-1661-5.
  • Liang, S. D., Y. L. Zhang, and J. Yang. 2015. An Experimental Study on Pile Scour Mitigating Measures Under Waves and Currents. Science China Technological Sciences 58 (6): 1031–1045. doi:10.1007/s11431-015-5829-9.
  • Lin, C., C. Bennett, J. Han, and R. L. Parsons. 2010. Scour Effects on the Response of Laterally Loaded Piles Considering Stress History of Sand. Computers and Geotechnics 37 (7–8): 1008–1014. doi:10.1016/j.compgeo.2010.08.009.
  • Liu, M. M., J. J. Lian, and M. Yang. 2017. Experimental and Numerical Studies on Lateral Bearing Capacity of Bucket Foundation in Saturated Sand. Ocean Engineering 144: 14–20.
  • Liu, R., G. Chen, J. Lian, and H. Ding. 2015. Vertical Bearing Behaviour of the Composite Bucket Shallow Foundation of Offshore Wind Turbines. Journal of Renewable and Sustainable Energy 7 (1) :013123. doi:10.1063/1.4907598.
  • Melville, B. W., and S. E. Coleman. 2000. Bridge Scour. USA and Canada: Water Resources Publications.
  • Ni, S. H., Y. H. Huang, and K. F. Lo. 2012. Numerical Investigation of the Scouring Effect on the Lateral Response of Piles in Sand. Journal of Performance of Constructed Facilities 26 (3): 320–325. doi:10.1061/(ASCE)CF.1943-5509.0000224.
  • Sumer, B. M., N. Christiansen, and J. Fredsøe. 1992. Time Scale of Scour Around a Vertical Pile, 308–315. San Francisco, CA: The International Society of Offshore and Polar Engineers.
  • Whitehouse, R. 1998. Scour at Marine Structures: A Manual for Practical Applications, 145–160. London, UK: Thomas Telford.
  • Xiao, Z., Y. Tian, and S. Gourvenec. 2016. A Practical Method to Evaluate Failure Envelopes of Shallow Foundations Considering Soil Strain Softening and Rate Effects. Applied Ocean Research 59: 395–407. doi:10.1016/j.apor.2016.06.015.
  • Yu, T., J. Lian, Z. Shi, and H. Wang. 2016. Experimental Investigation of Current-Induced Local Scour Around Composite Bucket Foundation in Silty Sand. Ocean Engineering 117: 311–320. doi:10.1016/j.oceaneng.2016.03.045.
  • Zhang, J. F., X. N. Zhang, and C. Yu. 2016. Wave-Induced Seabed Liquefaction Around Composite Bucket Foundations of Offshore Wind Turbines During the Sinking Process. Journal of Renewable and Sustainable Energy 8 (2): 023307. doi:10.1063/1.4946874.
  • Zhang, P., Y. Guo, Y. Liu, and H. Ding. 2016a. Experimental Study on Installation of Hybrid Bucket Foundations for Offshore Wind Turbines in Silty Clay. Ocean Engineering 114: 87–100.
  • Zhang, P., K. Xiong, H. Ding, and C. Le. 2014. Anti-Liquefaction Characteristics of Composite Bucket Foundations for Offshore Wind Turbines. Journal of Renewable and Sustainable Energy 6 (5): 053102. doi:10.1063/1.4895909.
  • Zhang, P., S. He, Y. Liu, and H. Ding. 2016b. Force Transfer Characteristics of Composite Bucket Foundation for Offshore Wind Turbines. Journal of Renewable and Sustainable Energy 8 (1): 013307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.