222
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Physical experimental study on the formation mechanism of pockmark by aeration

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 322-331 | Received 13 Nov 2018, Accepted 15 Jan 2019, Published online: 23 Apr 2019

References

  • Asaoka, A., M. Nakano, and T. Noda. . 2006. A Super/Sub Loading Yield Surface Approach to Compaction/Liquefaction of Sand and Secondary Consolidation of Clay. Japan-us Workshop on Testing.
  • Cathles, L. M., Z. Su, and D. Chen. . 2010. The Physics of Gas Chimney and Pockmark Formation, with Implications for Assessment of Seafloor Hazards and Gas Sequestration. Marine and Petroleum Geology 27 (1): 82–91.
  • Chen, J., H. Song, Y. Guan, L. M. Pinheiro, and M. Geng. . 2018. Geological and Oceanographic Controls on Seabed Fluid Escape Structures in the Northern Zhongjiannan Basin, South China Sea. Journal of Asian Earth Sciences 168: 38–47.
  • Dong, Y., D. Wang, and M. F. Randolph. . 2017. Investigation of Impact Forces on Pipeline by Submarine Landslide Using Material Point Method. Ocean Engineering 146: 21–28. doi:10.1016/j.oceaneng.2017.09.008.
  • Duarte, D., V. H. Magalhães, P. Terrinha, C. Ribeiro, P. Madureira, L. M. Pinheiro, O. Benazzouz, et al. 2017. Identification and Characterization of Fluid Escape Structures (Pockmarks) in the Estremadura Spur, West Iberian Margin. Marine and Petroleum Geology 82: 414–423. doi:10.1016/j.marpetgeo.2017.02.026.
  • Erdbrink, C. D., V. V. Krzhizhanovskaya, and P. M. A. Sloot. . 2014. Reducing Cross-Flow Vibrations of Underflow Gates: Experiments and Numerical Studies. Journal of Fluids & Structures 50: 25–48. doi:10.1016/j.jfluidstructs.2014.06.010.
  • Fan, N., T. K. Nian, H. B. Jiao, and Y. G. Jia. . 2018. Interaction between Submarine Landslides and Suspended Pipelines with a Streamlined Contour. Marine Georesources & Geotechnology 36 (6): 652–662. doi:10.1080/1064119X.2017.1362084.
  • Haines, S. S., P. E. Hart, T. S. Collett, W. Shedd, M. Frye, P. Weimer, R. Boswell, et al. 2017. High-Resolution Seismic Characterization of the Gas and Gas Hydrate System at Green Canyon 955, Gulf of Mexico, USA. Marine and Petroleum Geology 82: 220–237. doi:10.1016/j.marpetgeo.2017.01.029.
  • Hovland, M., J. V. Gardner, and A. G. Judd. . 2002. The Significance of Pockmarks to Understanding Fluid Flow Processes and Geohazards. Geofluids 2 (2): 127–136. doi:10.1046/j.1468-8123.2002.00028.x.
  • Hovland, M., and A. G. Judd. . 1988. Seabed Pockmarks and Seepages. Impact on Geology, Biology and the Marine Environment. London: Graham & Trotman Ltd. 293 pp.
  • Hovland, M., M. R. Talbot, H. Quale, S. Olaussen, and L. Aasberg. . 1987. Methane-Related Carbonate Cements in Pockmarks of the North Sea. Journal of Sedimentary Petrology 57: 881–892.
  • Joseph, J., D. N. Singh, P. Kumar, S. K. Dewri, C. Tandi, and J. Singh. . 2016. State-of-the-Art of Gas Hydrates and Relative Permeability of Hydrate Bearing Sediments. Marine Georesources & Geotechnology 34 (5): 450–464. doi:10.1080/1064119X.2015.1025929.
  • Judd, A. G., and M. Hovland. . 2007. Seabed Fluid Flow: The Impact of Geology, Biology and the Marine Environment. Cambridge: Cambridge University Press.
  • Kelly, L. H., S. M. Dickson, D. F. Belknap, W. A. Bernhardt, and M. Henderson. . 1994. Giant Seabed Pockmarks: Evidence for Gas Escape from Belfast Bay. Geology 22: 59–62. doi:10.1130/0091-7613(1994)022<0059:GSBPEF > 2.3.CO;2.
  • King, L. H., and B. Maclean. . 1970. Pockmarks on the Scotian Shelf. Geological Society of America Bulletin 81 (10): 3141–3148.
  • Mazzini, A., H. H. Svensen, S. Planke, C. F. Forsberg, and T. I. Tjelta. . 2016. Pockmarks and Methanogenic Carbonates above the Giant Troll Gas Field in the Norwegian North Sea. Marine Geology 373: 26–38. doi:10.1016/j.margeo.2015.12.012.
  • Pau, M., Ø. Hammer, and S. Chand. . 2014. Constraints on the Dynamics of Pockmarks in the SW Barents Sea: Evidence from Gravity Coring and High-Resolution, Shallow Seismic Profiles. Marine Geology 355: 330–345. doi:10.1016/j.margeo.2014.06.009.
  • Pilcher, R., and J. Argent. . 2007. Mega-Pockmarks and Linear Pockmark Trains on the West African Continental Margin. Marine Geology 244 (1–4): 15–32. doi:10.1016/j.margeo.2007.05.002.
  • Satyavani, N., and K. Sain. . 2015. Seismic Insights into Bottom Simulating Reflection (BSR) in the Krishna-Godavari Basin, Eastern Margin of India. Marine Georesources & Geotechnology 33 (3): 191–201. doi:10.1080/1064119X.2013.797059.
  • Shanmugam, G. . 2000. 50 Years of the Turbidite Paradigm (1950s—1990s): Deep-Water Processes and Facies Models—A Critical Perspective. Marine & Petroleum Geology 17 (2): 285–342.
  • Shanmugam, G. . 2003. Deep-Marine Tidal Bottom Currents and Their Reworked Sands in Modern and Ancient Submarine Canyons. Marine & Petroleum Geology 20 (5): 471–491. doi:10.1016/S0264-8172(03)00063-1.
  • Sladen, J. A., R. D. D'Hollander, and J. Krahn. . 1985. The Liquefaction of Sands, a Collapse Surface Approach. Canadian Geotechnical Journal 22 (4): 564–578. doi:10.1139/t85-076.
  • Tasianas, A., S. Bünz, B. Bellwald, Ø. Hammer, S. Planke, N. Lebedeva-Ivanova, P. Krassakis, et al. 2018. High-Resolution 3D Seismic Study of Pockmarks and Shallow Fluid Flow Systems at the Snøhvit Hydrocarbon Field in the SW Barents Sea. Marine Geology 403: 247–261. doi:10.1016/j.margeo.2018.06.012.
  • Teague, J., M. J. Allen, and T. B. Scott. . 2018. The Potential of Low-Cost ROV for Use in Deep-Sea Mineral, Ore Prospecting and Monitoring. Ocean Engineering 147: 333–339. doi:10.1016/j.oceaneng.2017.10.046.
  • Vedachalam, N., S. Ramesh, P. U. Prasanth, and G. A. Ramadass. . 2018. Modeling of Rising Methane Bubbles during Production Leaks from the Gas Hydrate Sites of India. Marine Georesources & Geotechnology 36 (8): 966–973. doi:10.1080/1064119X.2017.1405129.
  • Zhang, J. H., H. L. Lin, and K. Z. Wang. . 2015. Centrifuge Modeling and Analysis of Submarine Landslides Triggered by Elevated Pore Pressure. Ocean Engineering 109: 419–429. doi:10.1016/j.oceaneng.2015.09.020.
  • Zhang, S., Y. Jia, M. Wen, Z. Wang, Z. Yaqi, C. Zhu, B. Li, and X. Liu. . 2017. Vertical Migration of Fine-Grained Sediments from Interior to Surface of Seabed Driven by Seepage Flows–‘Sub-Bottom Sediment Pump Action. Journal of Ocean University of China 16 (1): 15–24. doi:10.1007/s11802-017-3042-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.