240
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of resistance factors for LRFD of soil nail pullout limit state using default FHWA load and resistance models

&
Pages 332-348 | Received 22 Nov 2018, Accepted 15 Jan 2019, Published online: 26 Feb 2019

References

  • AASHTO. 2010. LRFD Bridge Design Specifications. 5th ed. Washington, DC: American Association of State Highway and Transportation Officials (AASHTO).
  • AASHTO. 2012. LRFD Bridge Design Specifications. 6th ed. Washington, DC: American Association of State Highway and Transportation Officials (AASHTO).
  • AASHTO. 2017. LRFD Bridge Design Specifications. 8th ed. Washington, DC: American Association of State Highway and Transportation Officials (AASHTO).
  • Allen, T. M., A. S. Nowak, and R. J. Bathurst. 2005. Calibration to Determine Load and Resistance Factors for Geotechnical and Structural Design. Circular E-C079. Washington, DC: Transportation Research Board, National Research Council.
  • Baecher, G. B., and J. T. Christian. 2003. Reliability and Statistics in Geotechnical Engineering. Chichester, UK: Wiley.
  • Barret, C., J. Chinchiolo, C. Lobato, and N. Beard. 2011. Case Studies in Roadway Landslide Repair Along Sides, River Banks, Bluffs, and Other Sensitive Riparian Areas. Paper presented at the 62nd highway geology symposium, July 2011, USA, 1–16. http://morsky.ca/wp-content/uploads/2012/11/Case-Studies-in-Roadway-Landslide-Repair-along-Stream-Sides-River-Banks-Bluffs-and-other-Sensitive-Riparian-Areas.pdf
  • Basheer, I. A., and M. Hajmeer. 2000. Artificial Neural Networks: Fundamentals, Computing, Design, and Application. Journal of Microbiological Methods 43 (1): 3–31. doi: 10.1016/S0167-7012(00)00201-3.
  • Bathurst, R. J., B. Huang, and T. M. Allen. 2012. LRFD Calibration of the Ultimate Pullout Limit State for Geogrid Reinforced Soil Retaining Walls. International Journal of Geomechanics 5 (3–4): 218–228.
  • Bathurst, R. J., S. Javankhoshdel, and T. M. Allen. 2017. LRFD Calibration of Simple Soil-Structure Limit States Considering Method Bias and Design Parameter Variability. Journal of Geotechnical and Geoenvironmental Engineering 143 (9): 04017053. doi: 10.1061/(ASCE)GT.1943-5606.0001735.
  • Benbouras, M. A., R. K. Mitiche, H. Zedira, A. I. Petrisor, N. Mezouar, and F. Debiche. 2018. A New Approach to Predict the Compression Index Using Artificial Intelligence Methods. Marine Georesources & Geotechnology. doi: 10.1080/1064119X.2018.1484533.
  • Byrne, R. J., D. Cotton, J. Porterfield, C. Wolschlag, and G. Ueblacker. 1998. Manual for Design and Construction Monitoring of Soil Nail Wall. U.S. Department of Transportation Publication no. FHWA-SA-96-069R. Washington, DC: Federal Highway Administration, FHWA.
  • Cai, G. J., S. Y. Liu, A. J. Puppala, and L. Tong. Y. 2015. Identification of Soil Strata Based on General Regression Neural Network Model from CPTU Data. Marine Georesources & Geotechnology 33 (3): 229–238. doi: 10.1080/1064119X.2013.843046.
  • California Coastal Commission. 2017. Staff Report Regular Calendar. Application File, 2-16-0684, 87. https://documents.coastal.ca.gov/reports/2017/3/w12b-3-2017.pdf
  • Canadian Standards Association (CSA). 2014. Canadian Highway Bridge Design Code. CAN/CSA-S6-14. Mississauga, Ontario, Canada.
  • Ching, J. Y., and K. K. Phoon. 2011. A Quantile-Based Approach for Calibrating Reliability-Based Partial Factors. Structural Safety 33 (45): 275–85. − doi: 10.1016/j.strusafe.2011.04.002.
  • Demuth, H. B., M. H. Beale, O. De Jess, and M. T. Hagan. 2014. Neural Network Design. Stillwater, OK: Martin Hagan Publisher.
  • DeVries, B. J., and X. Yu. 2016. Calibration of Pullout Resistance Factors Using Survival Analysis for Soil Nails in North Texas. Journal of Infrastructure Systems 22 (2): 04016003. LRFD J doi: 10.1061/(ASCE)IS.1943-555X.0000286.
  • Dithinde, M., K. K. Phoon, M. De Wet, and J. V. Retief. 2011. Of Model Uncertainty in the Static Pile Design Formula. Journal of Geotechnical and Geoenvironmental Engineering 137 (1): 70–85. Characterisation − doi: 10.1061/(ASCE)GT.1943-5606.0000401.
  • European Committee for Standardization (CEN). 2002. Eurocode: Basis of Structural Design. Ref. No. EN. CEN 1990 (2002). Brussels, Belgium.
  • Fenton, G. A., and M. Naghibi. 2011. Geotechnical Resistance Factors for Ultimate Limit State Design for Deep Foundations in Frictional Soils. Canadian Geotechnical Journal 48 (11): 1742–117. doi: 10.1139/t11-068.
  • Fenton, G. A., D. V. Griffiths, and X. Zhang. 2008. Load and Resistance Factor Design of Shallow Foundations Against Bearing Failure. Canadian Geotechnical Journal 45 (11): 1556–1571. doi: 10.1139/T08-061.
  • Fenton, G. A., F. Naghibi, D. Dundas, R. J. Bathurst, and D. V. Griffiths. 2016. Reliability-Based Geotechnical Design in the 2014 Canadian Highway Bridge Design Code. Canadian Geotechnical Journal 53 (2): 236–251. doi: 10.1139/cgj-2015-0158.
  • Foye, K. C., R. Salgado, and B. Scott. 2006. Resistance Factors for Use in Shallow Foundation LRFD. Journal of Geotechnical and Geoenvironmental Engineering 132 (9):1208–1218. doi: 10.1061/(ASCE)1090-0241(2006)132:9(1208).
  • Geotechnical Engineering Office (GEO). 2008. Geoguide 7— Guide to Soil Nail Design and Construction, GEO, Civil Engineering and Development Department, The Government of the Hong Kong Special Administrative Region. GEO report No. 197. ISBN: 978-962-02-0375-6.
  • Gong, W. P., C. H. Juang, S. Khoshnevisan, and K. K. Phoon. 2016. R-LRFD: Load and Resistance Factor Design Considering Robustness. Computers and Geotechnics 74 (74): 74–87. (− doi: 10.1016/j.compgeo.2015.12.017.
  • Griggs, G. B. 2005. California’s Retreating Coastline: Where Do We Go From Here? In California and the World Ocean. 97, eds. Magoon, O. T., Converse, H., Baird, B., et al., Vol. 2. American Society of Civil Engineering, 121–125.
  • Griggs, G. B., K. Patsch, and L. E. Savoy. 2005. Living with the Changing California Coast. Berkeley, CA: University of California Press.
  • Han, F., J. Lim, R. Salgado, M. Prezzi, and M. Zaheer. 2015. Load and Resistance Factor Design of Bridge Foundations Accounting for Pile Group–Soil Interaction. Joint Transportation Research program, Publication No. FHWA/IN/JTRP-2015/24. West Lafayette, IN: Purdue University. http://dx.doi.org/10.5703/1288284316009
  • Haykin, S. 2009. Neural Networks and Learning Machines. 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall.
  • Holtz, R. D., W. D. Kovacs, and T. C. Sheahan. 2010. An Introduction to Geotechnical Engineering. 2nd ed. Upper Saddle River, NJ: PEARSON.
  • International Organization for Standardization (ISO). 2015. General Principles on Reliability of Structures. ISO2394. Geneva, Switzerland 2015.
  • Kim, D., and R. Salgado. 2012a. Load and Resistance Factors for External Stability Checks of Mechanically Stabilized Earth Walls. Journal of Geotechnical and Geoenvironmental Engineering 138 (3): 241–117. doi: 10.1061/(ASCE)GT.1943-5606.0000595.
  • Kim, D., and R. Salgado. 2012b. Load and Resistance Factors for Internal Stability Checks of Mechanically Stabilized Earth Walls. Journal of Geotechnical and Geoenvironmental Engineering 138 (8): 910–117. doi: 10.1061/(ASCE)GT.1943-5606.0000664.
  • Kulhawy, F. H., K. K. Phoon, and Y. Wang. 2012. Reliability-Based Design of Foundations-A Modern View. In Geotechnical Engineering State of the Art and Practice: Keynote Lectures from GeoCongress 2012, ASCE, 102–117.
  • Lazarte, C. A. 2011. Proposed Specifications for LRFD Soil-Nailing Design and Construction. NCHRP Report 701. Washington, DC: Transportation Research Board, National Research Council.
  • Lazarte, C. A. 2013. Calibration of LRFD-Based Resistance Factors for Soil Nail Pullout. In Paper presented at the ASCE Geo-Congress 2013: Foundation Engineering in the Face of Uncertainty, San Diego, CA, 633 − 644. doi: 10.1061/9780784412763.048
  • Lazarte, C. A., and G. B. Baecher. 2003. LRFD for Soil Nailing Design and Specifications. In Paper presented at the Proceedings International Workshop on limit state design in geotechnical engineering practice (LSD 2003), eds. K. K. Phoon, Y. Honjo, and R. B. Gilbert. Cambridge, MA. Hackensack, NJ: World Scientific Publishing Co.
  • Lazarte, C. A., H. Robinson, J. E. Gómez, A. Baxter, A. Cadden, and R. Berg. 2015. Geotechnical Engineering Circular No. 7 Soil Nail Walls—Reference Manual. U.S. Department of Transportation Publication no. FHWA-NHI-14-007. Washington, DC: Federal Highway Administration, FHWA.
  • Lazarte, C. A., V. Elias, D. Espinoza, and P. J. Sabatini. 2003. Geotechnical Engineering Circular No. 7 Soil Nail Walls. Report FHWA0-IF-03-017. Washington, DC: Federal Highway Administration, FHWA.
  • Li, D. Q., X. Peng, S. Khoshnevisan, and C. H. Juang. 2017. Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness. Computers and Geotechnics 81(1): 229–238. doi: 10.1016/j.compgeo.2016.08.018.
  • Lin, P., and J. Liu. 2017. Analysis of Resistance Factors for LRFD of Soil Nail Walls Against External Stability Failures. Acta Geotechnica 12 (1): 157–169. doi: 10.1007/s11440-016-0443-y.
  • Lin, P., and R. J. Bathurst. 2018a. Influence of Cross-Correlation Between Nominal Load and Resistance on Reliability-Based Design for Simple Linear Soil-Structure Limit States. Canadian Geotechnical Journal 55 (2): 279–117. doi: 10.1139/cgj-2017-0012.
  • Lin, P., and R. J. Bathurst. 2018b. Reliability-Based Internal Limit States Analysis and Design of Soil Nails Using Different Load and Resistance Models. Journal of Geotechnical and Geoenvironmental Engineering, 144(5): 04018022. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001862.
  • Lin, P., and R. J. Bathurst. 2019. Calibration of Resistance Factors for Load and Resistance Factor Design of Internal Limit States of Soil Nail Walls. Journal of Geotechnical and Geoenvironmental Engineering, 145(1): 04018100.
  • Lin, P., R. J. Bathurst, S. Javankhoshdel, and J. Liu. 2017a. Statistical Analysis of the Effective Stress Method and Modifications for Prediction of Ultimate Bond Strength of Soil Nails. Acta Geotechnica 12 (1): 171–117. doi: 10.1007/s11440-016-0477-1.
  • Lin, P., R. J. Bathurst, and J. Liu. 2017b. Statistical Evaluation of the FHWA Simplified Method and Modifications for Predicting Soil Nail Loads. Journal of Geotechnical and Geoenvironmental Engineering 143 (3): 04016107. (doi: 10.1061/(ASCE)GT.1943-5606.0001614.
  • Lin, P., J. Liu, and X. Yuan. 2017c. Reliability Analysis of Soil Nail Walls Against External Failures in Layered Ground. Journal of Geotechnical and Geoenvironmental Engineering 143 (1): 04016077. doi: 10.1061/(ASCE)GT.1943-5606.0001574.
  • Liu, H., L. Tang, and P. Lin. 2017. Maximum Likelihood Estimation of Model Uncertainty in Predicting Soil Nail Loads using Default and Modified FHWA Simplified Methods. Mathematical Problems in Engineering 2017: 1. doi: 10.1155/2017/7901918.
  • Liu, H., L. Tang, and P. Lin. 2018. Estimation of Ultimate Bond Strength for Soil Nails in Clayey Soils using Maximum Likelihood Method. Georisk: Assess Manage Risk Eng Syst Geohaz 12 (3): 190–202. doi: 10.1080/17499518.2017.1422525.
  • Lopez, I., L. Aragones, Y. Villacampa, and P. Compan. 2018a. Artificial Neural Network Modelling of Cross-Shore Profile on Sand Beaches: The Coast of the Province of Valencia (Spain). Marine Georesources & Geotechnology 36 (6): 698–708. doi: 10.1080/1064119X.2017.1385666.
  • Lopez, I., L. Aragones, and Y. Villacampa. 2018b. Modelling the Cross-Shore Profiles of Sand Beaches Using Artificial Neural Networks. Marine Georesources & Geotechnology doi: 10.1080/1064119X.2018.1482510.
  • Maier, H. R., and G. C. Dandy. 2000. Application of Artificial Neural Networks to Forecasting of Surface Water Quality Variables: Issues, Applications and Challenges. In Artificial Neural Networks in Hydrology, 287–309. Dordrecht, Netherlands: Springer.
  • Melchers, R. E., and A. T. Beck. 2018. Structural Reliability Analysis and Prediction. 3rd ed. Chichester, UK: Wiley.
  • Mola-Abasi, H., and A. Eslami. 2018. Prediction of Drained Soil Shear Strength Parameters of Marine Deposit from CPTu Data Using GMDH-Type Neural Network. Marine Georesources & Geotechnology. doi: 10.1080/1064119X.2017.1415400.
  • Moshfeghi, S., and A. Eslami. 2018. Reliability-Based Assessment of Drilled Displacement Piles Bearing Capacity Using CPT Records. Marine Georesources & Geotechnology doi: 10.1080/1064119X.2018.1448493.
  • Moradi, F., H. Bonakdari, O. Kisi, I. Ebtahaj, J. Shiri, and B. Gharabaghi. 2018. Abutment Scour Depth Modeling Using Neuro-Fuzzy-Embedded Techniques. Marine Georesources & Geotechnology doi: 10.1080/1064119X.2017.1420113.
  • Muduli, P. K., M. R. Das, P. Samui, and S. K. Das. 2013. Uplift Capacity of Suction Caisson in Clay using Artificial Intelligence Techniques. Marine Georesources & Geotechnology 31 (4): 375–117. doi: 10.1080/1064119X.2012.690827.
  • Najafzadeh, M., F. Saberi-Movahed, and S. Sarkamaryan. 2018. NF-GMDH-Based Self-Organized Systems to Predict Bridge Pier Scour Depth Under Debris Flow Effects. Marine Georesouces & Geotechnology 36 (5): 589–602. doi: 10.1080/1064119X.2017.1355944.
  • National Cooperative Highway Research Program (NCHRP). 2004. Load and Resistance Factors for Earth Pressures on Bridge Substructures and Retaining Walls. NCHRP, 12-55. Washington, DC: Transportation Research Board, National Research Council.
  • Natoli, E., B. Admiraal, D. Wit, and A. Yahyaoui. 2017. River Embankment Strengthening by Non-Metallic Nails: Overview on a Permanent Soil Nailing for Flood Protection. Innovative Infrastructure Solutions 2 (1): 53. https://doi.org/10.1007/s41062-017-0101-8.
  • Nowak, A. S. 1999. Calibration of LRFD Bridge Design Code. NCHRP report 368. Washington, DC: Transportation Research Board.
  • Nowak, A. S., and K. R. Collins. 2012. Reliability of Structures. 2nd ed. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Paikowsky, S. G. 2010. LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures. Transportation Research Board Vol. 651
  • Paikowsky, S. G., B. Birgisson, M. McVay, T. Nguyen, C. Kuo, G. Baecher, B. Ayyub, K. Stenersen, K. O’Malley, L. Chernauskas, and M. O’Neill. 2004. Load and Resistance Factor Design (LRFD) for Deep Foundations. NCHRP report 507, 126. Washington, DC: Transportation Research Board of the National Academies.
  • Park, H. I. 2011. Development of Neural Network Model to Estimate the Permeability Coefficient of Soils. Marine Georesources & Geotechnology 29 (4): 267–278. doi: 10.1080/1064119X.2011.554963.
  • Park, H. I., and C. W. Cho. 2010. Neural Network Model for Predicting the Resistance of Driven Piles. Marine Georesources & Geotechnology 28 (4): 324–117. doi: 10.1080/1064119X.2010.514232.
  • Park, J. H., D. Kim, and C. K. Chung. 2012. Implementation of Bayesian Theory on LRFD of Axially Loaded Driven Piles. Computers and Geotechnics 42 (5): 73–80. − doi: 10.1016/j.compgeo.2012.01.002.
  • Phear, A., C. Dew, B. Ozsoy, N. J. Wharmby, J. Judge, and A. D. Barley. 2005. Soil Nailing − Best Practice Guidance. CIRIA C637. London.
  • Phoon, K. K., and F. H. Kulhawy. 1999. Characterization of Geotechnical Variability. Canadian Geotechnical Journal 36 (4): 612–117. doi: 10.1139/cgj-36-4-612.
  • Phoon, K. K., and F. H. Kulhawy. 2005. Characterisation of Model Uncertainties for Laterally Loaded Rigid Drilled Shafts. Géotechnique 55 (1): 45–54. doi: 10.1680/geot.55.1.45.58593.
  • Phoon, K. K., F. H. Kulhawy, and M. D. Grigoriu. 2003. Multiple Resistance Factor Design for Shallow Transmission Line Structure Foundations. Journal of Geotechnical and Geoenvironmental Engineering 129 (9): 807–117. doi: 10.1061/(ASCE)1090-0241(2003)129:9(807).
  • Phoon, K. K., J. Y. Ching, and J. R. Chen. 2013. Performance of Reliability-Based Design Code Formats for Foundations in Layered Soils. Computers and Structures 126:100–106. doi: 10.1016/j.compstruc.2012.12.023.
  • Ravindra, M. K., and T. V. Galambos. 1978. Load and Resistance Factor Design for Steel. ASCE Journal of Structural Divison 104 (ST9): 1337–117.
  • Shahin, M. A. 2015. A Review of Artificial Intelligence Applications in Shallow Foundations. International Journal of Geotechnical Engineering 9 (1): 49–60. doi: 10.1179/1939787914Y.0000000058.
  • Shahin, M. A. 2016. State-of-the-Art Review of Some Artificial Intelligence Applications in Pile Foundations. Geoscience Frontiers 7 (1): 33–44. doi: 10.1016/j.gsf.2014.10.002.
  • Shahin, M. A., M. B. Jaksa, and H. R. Maier. 2008. State of the Art of Artificial Neural Networks in Geotechnical Engineering. Electronic Journal of Geotechnical Engineering 8 (1 − 26).
  • Shin, J. H., and H. I. Park. 2010. Neural Network Formula for Local Scour at Piers Using Field Data. Marine Georesources & Geotechnology 28 (1): 37–48. doi: 10.1080/10641190903263054.
  • Sivakumar Babu, G. L., and V. P. Singh. 2011. Reliability-Based Load and Resistance Factors for Soil-Nail Walls. Canadian Geotechnical Journal 48 (6): 915–117. doi: 10.1139/t11-005.
  • Transportation Research Board. 1999. Use of Artificial Neural Networks in Geomechanical and Pavement Systems. Transportation Research Circular, December (E-C012), 1–18.
  • Yuan, J., and P. Lin. 2018. Reliability Analysis of Soil Nail Internal Limit States using Default FHWA Load and Resistance Models. Marine Georesources & Geotechnology doi: 10.1080/1064119X.2018.1489920.
  • Zelo, I., H. Shipman, and J. Brennan. 2000. Alternative Bank Protection Methods for Puget Sound Shorelines. Paper presented at the Shorelands and Environmental Assistance Program. Washington, DC: Department of Ecology.
  • Zevgolis, I. E., and Z. A. Daffas. 2018. System Reliability Assessment of Soil Nail Walls. Computers and Geotechnis 98 (6): 232–242. doi: 10.1016/j.compgeo.2017.10.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.