131
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Research on the sediment acoustic properties based on a water coupled laboratory measurement system

, , ORCID Icon, , , & show all
Pages 595-603 | Received 04 Mar 2019, Accepted 28 Mar 2019, Published online: 15 May 2019

References

  • Arthur, A. N., N. T. M. Joana, G. M. Juliana, R. J. Miguel, and L. B. P. Rodrigo. 2013. Geotechnical Influence on the Acoustic Properties of Marine Sediments of the Santos Basin, Brazil. Marine Georesources & Geotechnology 31 (2): 125–136. doi:10.1080/1064119X.2012.669815.
  • Bae, H. S., D. C. Kim, G. S. Lee, G. Y. Kim, S. P. Kim, Y. K. Seo, and J. C. Kim. 2014. Physical and Acoustic Properties of Inner Shelf Sediments in the South Sea, Korea. Quaternary International 344: 125–142. doi:10.1016/j.quaint.2014.03.058.
  • Baldwin, K. C., B. Celikkol, and A. J. Silva. 1981. Marine Sediment Acoustic Measurement System. Ocean Engineering 8 (5): 481–488. doi:10.1016/0029-8018(81)90013-5.
  • Best, A. I., and D. E. Gunn. 1999. Calibration of Marine Sediment Core Loggers for Quantitative Acoustic Impedance Studies. Maine Geology 160 (1-2): 137–146. doi:10.1016/S0025-3227(99)00017-1.
  • Biot, M. A. 1956a. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. low-Frequency Range. The Journal of the Acoustical Society of America 28 (2): 168–178. doi:10.1121/1.1908239.
  • Biot, M. A. 1956b. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range. The Journal of the Acoustical Society of America 28 (2): 179–191. doi:10.1121/1.1908241.
  • Breitzke, M., and V. Spieβ. 1993. An Automated Full Waveform Logging System for High-Resolution P-Wave Profiles in Marine Sediments. Marine Geophysical Researches 15 (4): 297–321. doi:10.1007/BF01982387.
  • Buckingham, M. J. 1997. Theory of Acoustic Attenuation, Dispersion, and Pulse Propagation in Unconsolidated Granular Materials Including Marine Sediments. The Journal of the Acoustical Society of America 102 (5): 2579–2596. doi:10.1121/1.420313.
  • Buckingham, M. J. 2000. Wave Propagation, Stress Relaxation, and Grain-to-Grain Shearing in Saturated, Unconsolidated Marine Sediments. The Journal of the Acoustical Society of America 108 (6): 2796–2815. doi:10.1121/1.1322018.
  • Gorgas, T. J., R. H. Wilkens, S. S. Fu, L. N. Frazer, M. D. Richardson, K. B. Briggs, and H. Lee. 2002. In Situ Acoustic and Laboratory Ultrasonic Sound Speed and Attenuation Measured in Heterogeneous Soft Seabed Sediments: Eel River Shelf, California. Marine Geology 182 (1-2): 103–119. doi:10.1016/S0025-3227(01)00230-4.
  • Hamilton, E. L. 1980. Geoacoustic Modeling of the Seafloor. The Journal of the Acoustical Society of America 68 (5): 1313–1340. doi:10.1121/1.385100.
  • Hamilton, E. L. 1972. Compressional-Wave Attenuation in Marine Sediments. Geophysics 37 (4): 620–646. doi:10.1190/1.1440287.
  • Hamilton, E. L., and R. T. Bachman. 1982. Sound Velocity and Related Properties of Marine Sediments. The Journal of the Acoustical Society of America 72 (6): 1891–1904. doi:10.1121/1.388539.
  • Hou, Z., C. Guo, J. Wang, W. Chen, T. Li, Y. Zhang, and Y. Fu. 2017. Analysis of the Influences of Physical Parameters on Sediment Sound Speed. Marine Georesources & Geotechnology 35 (4): 466–471. 2016.1198944 doi:10.1080/1064119X.
  • Jackson, D. R., and M. D. Richardson. 2007. High-Frequency Seafloor Acoustics. New York, NY: Springer Science + Business Media.
  • Kan, G., B. Liu, J. Wang, X. Meng, G. Li, Q. Hua, and L. Sun. 2018. Sound Speed Dispersion Characteristics of Three Types of Shallow Sediments in the Southern Yellow Sea. Marine Georesources & Geotechnology 36 (7): 853–860. doi:10.1080/1064119X.2017.1392659.
  • Kim, G. Y., D. C. Kim, D. G. Yoo, and B. K. Shin. 2011. Physical and Geoacoustic Properties of Surface Sediments off Eastern Geoje Island, South Sea of Korea. Quaternary International 230 (1-2): 21–33. doi:10.1016/j.quaint.2009.07.028.
  • Lee, K. M., M. S. Ballard, A. R. McNeese, T. G. Muir, P. S. Wilson, R. D. Costley, and K. K. Hathaway. 2016. In Situ Measurements of Sediment Acoustic Properties in Currituck Sound and Comparison to Models. The Journal of the Acoustical Society of America 140 (5): 3593–3606. doi:10.1121/1.4966118.
  • Lee, K. M., M. S. Ballard, A. R. McNeese, and P. S. Wilson. 2017. Sound Speed and Attenuation Measurements within a Seagrass Meadow from the Water Column into the Seabed. The Journal of the Acoustical Society of America 141 (4): EL402–EL406. doi:10.1121/1.4979302.
  • Liu, B., T. Han, G. Kan, and G. Li. 2013. Correlations between the in Situ Acoustic Properties and Geotechnical Parameters of Sediments in the Yellow Sea, China. Journal of Asian Earth Sciences 77: 83–90. doi:10.1016/j.jseaes.2013.07.040.
  • McCann, C., J. Sothcott, and A. I. Best. 2014. A New Laboratory Technique for Determining the Compressional Wave Properties of Marine Sediments at Sonic Frequencies and in Situ Pressures. Geophysical Prospecting 62 (1): 97–116. doi:10.1111/1365-2478.12079.
  • Medwin, H. 1975. Speed of Sound in Water, a Simple Equation for Realistic Parameters. The Journal of the Acoustical Society of America 58 (6): 1318–1319. doi:10.1121/1.380790.
  • Richardson, M. D. 1986. Spatial Variability of Surficial Shallow Water Sediment Geoacoustic Properties. In Ocean Seismo-Acoustic, 527–536. London: Plenum Press. doi:10.1007/978-1-4613-2201-6_51.
  • Richardson, M. D. 1997. In-Situ, Shallow-Water Sediments Geoacoustic Properties. In Proceedings International Conference on Shallow-Water Acoustics, ed. R. Zhang and J. Zhou, 163–170. Beijing: China Ocean Press.
  • Richardson, M. D., and K. B. Briggs. 2004. Empirical Predictions of Seafloor Properties Based on Remotely Measured Sediment Impedance. In High Frequency Ocean Acoustic Conference, ed. M. B. Porter and M. Siderius, 12–21, Vol. 728. Melville: AIP Press.
  • Sessarego, J. P., A. N. Ivakin, and D. Ferrand. 2008. Frequency Dependence of Phase Speed, Group Speed, and Attenuation in Water-Saturated Sand, Laboratory Experiments. IEEE Journal of Oceanic Engineering 33 (4): 359–366. doi:10.1109/JOE.2008.927584.
  • Stoll, R. D. 1989. Sediment Acoustics. Berlin: Springer.
  • Turgut, A., R. Gauss, and J. Osler. 2005. Measurements of Velocity Dispersion in Marine Sediments during the Baundary04 Malta Plateau Experiment. Oceans 3: 2132–2136. doi:10.1109/OCEANS.2005.1640077.
  • Turgut, A., and T. Yamamoto. 1990. Measurements of Acoustic Wave Velocities and Attenuation in Marine Sediments. The Journal of the Acoustical Society of America 87 (6): 2376–2382. doi:10.1121/1.399084.
  • Wang, J., G. Li, B. Liu, G. Kan, Z. Sun, X. Meng, and Q. Hua. 2018a. Experimental Study of the Ballast in-Situ Sediment Acoustic Measurement System in South China Sea. Marine Georesources & Geotechnology 36 (5): 515–521. doi:10.1080/1064119X.2017.1348413.
  • Wang, J., B. Liu, G. Kan, G. Li, J. Zheng, and X. Meng. 2018b. Frequency Dependence of Sound Speed and Attenuation in Fine-Grained Sediments from 25 to 250 kHz Based on a Probe Method. Ocean Engineering 160: 45–53. doi:10.1016/j.oceaneng.2018.04.078.
  • Williams, K. L., D. R. Jackson, E. I. Thorsos, D. J. Tang, and S. G. Schock. 2002. Comparison of Sound Speed and Attenuation Measured in a Sandy Sediment to Predictions Based on the Biot Theory of Porous Media. IEEE Journal of Oceanic Engineering 27 (3): 413–428. doi:10.1109/joe.2002.1040928.
  • Yang, J., and D. Tang. 2017. Direct Measurements of Sediment Sound Speed and Attenuation in the Frequency Band of 2-8 kHz at the Target and Reverberation Experiment Site. IEEE Journal of Oceanic Engineering 42 (4): 1102–1109. doi:10.1109/JOE.2017.2714722.
  • Zhou, J., X. Zhang, and D. P. Knobles. 2009. Low-Frequency Geoacoustic Model for the Effective Properties of Sandy Seabottoms. The Journal of the Acoustical Society of America 125 (5): 2847–2866. doi:10.1121/1.3089218.
  • Zou, D., W. Luo, and H. Zheng. 2017. First Arrival Cycle-Based Calculation Methods of in Situ Sound Speed and Attenuation in Sediments. Marine Georesources & Geotechnology 35 (1): 98–103. doi:10.1080/1064119X.2015.1107672.
  • Zou, D., P. Yan, and J. Zhou. 2014. Research on Acoustic Properties of Seafloor Sediment with Temperature and Pressure Controlled. Marine Georesources & Geotechnology 32 (2): 93–105. 2012.661032 doi:10.1080/1064119x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.