469
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Comparison between reactive MgO- and Na2SO4-activated low-calcium fly ash-solidified soils dredged from East Lake, China

, , , &
Pages 1046-1055 | Received 02 Jun 2019, Accepted 09 Jul 2019, Published online: 05 Aug 2019

References

  • Abdalqader, A. F., F. Jin, and A. Al-Tabbaa. 2016. Development of Greener Alkali-Activated Cement: Utilisation of Sodium Carbonate for Activating Slag and Fly Ash Mixtures. Journal of Cleaner Production 113: 66–75. doi:10.1016/j.jclepro.2015.12.010.
  • ASTM E81-96. 2017. Standard test method for preparing quantitative pole figures. ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM E2402-11. 2017. Standard test method for mass loss and residue measurement validation of thermogravimetric analyzers. ASTM International, West Conshohocken, PA, www.astm.org.
  • ASTM D4404-18. 2018. Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. ASTM International, West Conshohocken, PA, www.astm.org.
  • Atiş, C. D., E. B. Görür, O. Karahan, C. Bilim, S. İlkentapar, and E. Luga. 2015. Very High Strength (120 MPa) Class F Fly Ash Geopolymer Mortar Activated at Different NaOH Amount, Heat Curing Temperature and Heat Curing Duration. Construction and Building Materials 96: 673–678. doi:10.1016/j.conbuildmat.2015.08.089.
  • Criado, M., A. Fernández Jiménez, and A. Palomo. 2010. Effect of Sodium Sulfate on the Alkali Activation of Fly Ash. Cement and Concrete Composites 32 (8): 589–594. doi:10.1016/j.cemconcomp.2010.05.002.
  • Cristelo, N., S. Glendinning, L. Fernandes, and A. T. Pinto. 2012. Effect of Calcium Content on Soil Stabilisation with Alkaline Activation. Construction and Building Materials 29: 167–174. doi:10.1016/j.conbuildmat.2011.10.049.
  • De Vargas, A. S., D. C. C. Dal Molin, A. C. F. Vilela, F. J. Da Silva, B. Pavão, and H. Veit. 2011. The Effects of Na2O/SiO2 Molar Ratio, Curing Temperature and Age on Compressive Strength, Morphology and Microstructure of Alkali-Activated Fly Ash-Based Geopolymers. Cement and Concrete Composites 33 (6): 653–660. doi:10.1016/j.cemconcomp.2011.03.006.
  • Donatello, S., A. Fernández-Jiménez, and A. Palomo. 2013. Very High Volume Fly Ash Cement. Early Age Hydration Study Using Na2SO4 as an Activator. Journal of the American Ceramic Society 96 (3): 900–906. doi:10.1111/jace.12178.
  • Fernández Jiménez, A., I. García-Lodeiro, and A. Palomo. 2007. Durability of Alkali-Activated Fly Ash Cementitious Materials. Journal of Materials Science 42: 3055–3065. doi:10.1007/s10853-006-0584-8.
  • GB/T50123-1999. 2007. GB/T 50123 – 1999 Standard for Soil Test Methods.” the National Standards Compilation Group of PRC. Beijing: China Planning Press.
  • Higgins, D. D. 2007. GGBS and Sustainability. Proceedings of the Institution of Civil Engineers - Construction Materials 160 (3): 99–101. doi:10.1680/coma.2007.160.3.99.
  • Horpibulsuk, S., R. Rachan, A. Chinkulkijniwat, Y. Raksachon, and A. Suddeepong. 2010. Analysis of Strength Development in Cement-Stabilized Silty Clay from Microstructural Considerations. Construction and Building Materials 24 (10): 2011–2021. doi:10.1016/j.conbuildmat.2010.03.011.
  • Jin, F., and A. Al-Tabbaa. 2014. Strength and Hydration Products of Reactive MgO-Silica Pastes. Cement and Concrete Composites 52: 27–33. doi:10.1016/j.cemconcomp.2014.04.003.
  • JTG E40-2007. 2007. Test Method of Soils for Highway Engineering. Ministry of Transport of PRC. Beijing: China Communications Press.
  • Kang, X., and B. Bate. 2016. Shear Wave Velocity and Its Anisotropy of Organically Modified High Volume Class F Fly Ash Kaolinite Mixtures. Journal of Geotechnical and Geoenvironmental Engineering 142 (12): 04016068. doi:10.1061/(ASCE)GT.1943-5606.0001562.
  • Lee, N. K., J. G. Jang, and H. K. Lee. 2014. Shrinkage Characteristics of Alkali-Activated Fly Ash/Slag Paste and Mortar at Early Ages. Cement and Concrete Composites 53: 239–248. doi:10.1016/j.cemconcomp.2014.07.007.
  • Marjanović, N., M. Komljenović, Z. Baščarević, V. Nikolić, and R. Petrović. 2015. Physical-Mechanical and Microstructural Properties of Alkali-Activated Fly Ash-Blast Furnace Slag Blends. Ceramics International 41 (1): 1421–1435. doi:10.1016/j.ceramint.2014.09.075.
  • Mitsuda, T., and H. Taguchi. 1977. Formation of Magnesium Silicate Hydrate and Its Crystallization to Talc. Cement and Concrete Research 7 (3): 223–230. doi:10.1016/0008-8846(77)90083-7.
  • Okoye, F. N., J. Durgaprasad, and N. B. Singh. 2015. Mechanical Properties of Alkali Activated Fly Ash/Kaolin Based Geopolymer Concrete. Construction and Building Materials 98: 685–691. doi:10.1016/j.conbuildmat.2015.08.009.
  • Palomo, A., M. W. Grutzeck, and M. T. Blanco. 1999. Alkali-Activated Fly ashes - A Cement for the Future. Cement and Concrete Research 29 (8): 1323–1329. doi:10.1016/S0008-8846(98)00243-9.
  • Provis, J. L., and J. S. J. V. Deventer. 2014. Alkali Activated Materials: State-of-the-Art Report. RILEM TC 224-AAM, ISBN 978-94-007-7672-2.
  • Puertas, F., S. Martı́nez-Ramı́rez, S. Alonso, and T. Vázquez, 2000. Alkali-Activated Fly Ash/Slag Cement. Strength Behaviour and Hydration Products. Cement and Concrete Research 30 (10): 1625–1632. doi:10.1016/S0008-8846(00)00298-2.
  • Rios, S., N. Cristelo, A. V. D. Fonseca, and C. Ferreira. 2016. Structural Performance of Alkali-Activated Soil Ash versus Soil Cement. Journal of Materials in Civil Engineering 28 (2): 04015125. doi:10.1061/(ASCE)MT.1943-5533.0001398.
  • Shi, C., D. Roy, and P. Krivenko. 2006. Alkali-Activated Cements and Concretes. London and New York: Taylor and Francis, ISBN 9780415700047.
  • Tartaglione, G., D. Tabuani, and G. Camino. 2008. Thermal and Morphological Characterisation of Organically Modified Sepiolite. Microporous and Mesoporous Materials 107 (1–2): 161–168. doi:10.1016/j.micromeso.2007.04.020.
  • Velandia, D. F., C. J. Lynsdale, J. L. Provis, F. Ramirez, and A. C. Gomez. 2016. Evaluation of Activated High Volume Fly Ash Systems Using Na2SO4, Lime and Quicklime in Mortars with High Loss on Ignition Fly Ashes. Construction and Building Materials 128: 248–255. doi:10.1016/j.conbuildmat.2016.10.076.
  • Wang, D., R. Zentar, and N. E. Abriak. 2013. Co-Valorisation of Dunkirk Dredged Sediments and Siliceous-Aluminous Fly Ash Using Lime. Road Materials and Pavement Design 14 (2): 415–431. doi:10.1080/14680629.2013.779309.
  • Wang, D., H. Wang, and Y. Jiang. 2019. Water Immersion-Induced Strength Performance of Solidified Soils with Reactive MgO - a Green and Low Carbon Binder. Journal of Testing and Evaluation 47 (2): 20170098. doi:10.1520/JTE20170098.
  • Wang, D., Y. Du, and J. Xiao. 2019. Shear Properties of Stabilized Loess Using Novel Reactive Magnesia-Bearing Binders. Journal of Materials in Civil Engineering 31 (5): 04019039. doi:10.1061/(ASCE)MT.1943-5533.0002662.
  • Wang, D., H. Wang, and S. Di. 2019. Mechanical Properties and Microstructure of Magnesia-Fly Ash Pastes. Road Materials and Pavement Design 20 (5): 1243–1254. doi:10.1080/14680629.2018.1439400.
  • Wang, D., X. Gao, R. Wang, S. Larsson, and M. Benzerzour. 2019d. Elevated Curing Temperature-Associated Strength and Mechanisms of Reactive MgO-Activated Industrial by-Products Solidified Soils. Marine Georesources & Geotechnology. doi:10.1080/1064119X.2019.1610817.
  • Wei, J., Q. Yu, W. Zhang, and H. Zhang. 2011. Reaction Products of MgO and Microsilica Cementitious Materials at Different Temperatures. Journal of Wuhan University of Technology—Mater. Sci. Ed. 26 (4): 745–748. doi:10.1007/s11595-011-0304-3.
  • Yi, Y., A. Al-Tabbaa, and M. Liska. 2014. Properties and Microstructure of GGBS-Magnesia Pastes. Advances in Cement Research 26 (2): 114–122. doi:10.1680/adcr.13.00005.
  • Zhang, T., C. R. Cheeseman, and L. J. Vandeperre. 2011. Development of Low pH Cement Systems by Forming Magnesium Silicate Hydrate (M-S-H). Cement and Concrete Research 41 (4): 439–422. doi:10.1016/j.cemconres.2011.01.016.
  • Zhang, T., J. Zou, B. Wang, Z. Wu, Y. Jia, and C. R. Cheeseman. 2018. Characterization of Magnesium Silicate Hydrate (MSH) Gel Formed by Reacting MgO and Silica Fume. Materials 11 (6): 909. doi:10.3390/ma11060909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.