204
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A comparative study of solo and hybrid data driven models for predicting bridge pier scour depth

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 589-599 | Received 07 Sep 2019, Accepted 03 Feb 2020, Published online: 09 Mar 2020

References

  • Amini, A., S. Hamidi, M. Malek, T. Mohammad, A. Shirzadi, and J. Behmanesh. 2019. Efficiency of Artificial Neural Networks in Determining Scour Depth at Composite Bridge Piers. Preprints 2019. doi:10.20944/preprints201906.0164.v1.
  • Azamathulla, H. M., and A. A. Ghani. 2011. Genetic Programming for Longitudinal Dispersion Coefficients in Streams. Water Resources Management 25 (6): 1537–1544. doi:10.1007/s11269-010-9759-9.
  • Azamathulla, H., A. Ghani, N. Zakaria, and A. Guven. 2010. Genetic Programming to Predict Bridge Pier Scour. Journal of Hydraulic Engineering 136 (3): 165–169. doi:10.1061/(ASCE)HY.1943-7900.0000133.
  • Baghbadorani, D. A., B. Ataie-Ashtiani, A. Beheshti, M. Hadjzaman, and M. Jamali. 2018. Prediction of Current-Induced Local Scour around Complex Piers: Review, Revisit, and Integration. Coastal Engineering 133: 43–58. doi:10.1016/j.coastaleng.2017.12.006.
  • Bateni, S. M., S. M. Borghei, and D. S. Jeng. 2007. Neural Network and Neuro-Fuzzy Assessments for Scour Depth around Bridge Piers. Engineering Applications of Artificial Intelligence 20 (3): 401–414. doi:10.1016/j.engappai.2006.06.012.
  • Bonakdari, H., and I. Ebtehaj. 2017. Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches. World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering 11 (6): 835–840.
  • Brandimarte, L., P. Paron, and G. Di Baldassarre. 2012. Bridge Pier Scour: A Review of Processes, Measurements and Estimates. Environmental Engineering and Management Journal 11 (5): 975–989. doi:10.30638/eemj.2012.121.
  • Cheng, M. Y., M. T. Cao, and Y. W. Wu. 2014. Predicting Equilibrium Scour Depth at Bridge Piers Using Evolutionary Radial Basis Function Neural Network. Journal of Computing in Civil Engineering 29 (5): 04014070. doi:10.1061/(ASCE)CP.1943-5487.0000380.
  • Dang, N. M., D. T. Anh, and T. D. Dang. 2019. ANN Optimized by PSO and Firefly Algorithms for Predicting Scour Depths around Bridge Piers. Engineering with Computers: 1–11. doi:10.1007/s00366-019-00824-y.
  • Duan, Q., S. Sorooshian, and V. K. Gupta. 1992. Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. Water Resources Research 28 (4): 1015–1031. doi:10.1029/91WR02985.
  • Duan, Q. Y., V. K. Gupta, and S. Sorooshian. 1993. Shuffled Complex Evolution Approach for Effective and Efficient Global Minimization. Journal of Optimization Theory 76 (3): 501–521.
  • Esmaeili, M., A. Kanani, and A. Jamali. 2017. Prediction of Scour Depth around Inclined Bridge Piers Using Optimized ANFIS with GA. Journal of Hydrosciences and Environment 1 (2): 34–45.
  • Ferreira, C. 2001. Gene-Expression Programming. A New Adaptive Algorithm for Solving Problems. Complex Systems 13 (2): 87–129.
  • Gaudio, R., C. Grimaldi, A. Tafarojnoruz, and F. Calomino. 2010. Comparison of Formulae for the Prediction of Scour Depth at Piers. Proceedings of the 1st IAHR European Division Congress, Edinburgh, UK, 4–6.
  • Geem, Z. W., J. H. Kim, and G. Loganathan. 2001. A New Heuristic Optimization Algorithm: harmony Search. Simulation 76 (2): 60–68. doi:10.1177/003754970107600201.
  • Goel, A. 2019. Prediction of Scour Depth around Bridge Piers Using M5 Model Tree. IWRA (India) Journal (Half Yearly Technical Journal of Indian Geographical Committee of IWRA) 8 (1): 29–34.
  • Ivakhnenko, A. G. 1968. The Group Method of Data Handling, a Rival of the Method of Stochastic Approximation. Soviet Automatic Control 1 (3): 43–55.
  • Jamei, M., and I. Ahmadianfar. 2019. Prediction of Scour Depth at Piers with Debris Accumulation Effects Using Linear Genetic Programming. Marine Georesources & Geotechnology: 1–12. doi:10.1080/1064119X.2019.1595793.
  • Jang, J. S. R. 1993. ANFIS: Adaptive Network Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23: 665–685. doi:10.1109/21.256541.
  • Jang, J. S. R., C. T. Sun, and E. Mizutani. 1997. Neuro-Fuzzy and Soft Computing – a Computational Approach to Leaning and Machine Intelligence. MATLAB Curriculum Series. Upper Saddle River, NJ: Prentice Hall.
  • Kan, G., K. Liang, J. Li, L. Ding, X. He, Y. Hu, and M. Amo-Boateng. 2016. Accelerating the SCE-UA Global Optimization Method Based on Multi-Core CPU and Many-Core. Advances in Meteorology 2016: 1–10. doi:10.1155/2016/8483728.
  • Karkheiran, S., A. Kabiri-Samani, M. Zekri, and H. M. Azamathulla. 2019. Scour at Bridge Piers in Uniform and Armored Beds under Steady and Unsteady Flow Conditions Using ANN-APSO and ANN-GA Algorithms. ISH Journal of Hydraulic Engineering : 1–9. doi:10.1080/09715010.2019.1617796.
  • Kaya, A. 2010. Artificial Neural Network Study of Observed Pattern of Scour Depth around Bridge Piers. Computers and Geotechnics 37 (3): 413–418. doi:10.1016/j.compgeo.2009.10.003.
  • Kecman, V. 2001. Learning and Soft Computing: Support Vector Machines, Neural Networks and Fuzzy Logic Models. Cambridge, MA: The MIT Press.
  • Landers, M. N., and D. S. Mueller. 1996. Evaluation of Selected Pier-Scour Equations Using Field Data. Transportation Research Record: Journal of the 1523 (1): 186–195. doi:10.1177/0361198196152300123.
  • Lee, T. L., D. S. Jeng, G. H. Zhang, and J. H. Hong. 2007. Neural Network Modeling for Estimation of Scour Depth around Bridge Piers. Journal of Hydrodynamics 19 (3): 378–386. doi:10.1016/S1001-6058(07)60073-0.
  • Masoumi, M., M. J. Khanjani, and K. Qaderi. 2016. Uplift Capacity Prediction of Suction Caisson in Clay Using a Hybrid Intelligence Method (GMDH-HS). Applied Ocean Research 59: 408–416. doi:10.1016/j.apor.2016.07.005.
  • Moradi, F., H. Bonakdari, O. Kisi, I. Ebtehaj, J. Shiri, and B. Gharabaghi. 2019. Abutment Scour Depth Modeling Using Neuro-Fuzzy-Embedded Techniques. Marine Georesources & Geotechnology 37 (2): 190–200. doi:10.1080/1064119X.2017.1420113.
  • Moreno, M., R. Maia, and L. Couto. 2016. Prediction of Equilibrium Local Scour Depth at Complex Bridge Piers. Journal of Hydraulic Engineering 142 (11): 04016045. doi:10.1061/(ASCE)HY.1943-7900.0001153.
  • Mueller, D. S., and C. R. Wagner. 2005. Field observations and evaluations of streambed scour at bridges. Rep. No. FHWA-RD-03-052, Office of Engineering Research and Development, Federal Highway.
  • Muttil, N., and A. W. Jayawardena. 2008. Shuffled Complex Evolution Model Calibrating Algorithm: enhancing Its Robustness and Efficiency. Hydrological Processes 22 (23): 4628–4638.
  • Muzzammil, M., J. Alam, and M. Danish. 2015. The GMDH Model for Prediction of Scour at Bridge Pier in Cohesive Bed. 20th International Conference on Hydraulics, Water Resources and River Engineering, IIT Roorkee, India, 17–19 December, 2015.
  • Najafzadeh, M., J. Shiri, and M. Rezaie Balf. 2017. New Expressions-Based Models to Estimate Scour Depth at Clear Water Conditions in Rectangular Channels. Marine Georesources & Geotechnology 36 (2): 227–235. doi:10.1080/1064119X.2017.1303009.
  • Pal, M., N. K. Singh, and N. K. Tiwari. 2012. M5 Model Tree for Pier Scour Prediction Using Field Dataset. Journal of Civil Engineering 16 (6): 1079–1084.
  • Pandey, M., M. Zakwan, P. K. Sharma, and Z. Ahmad. 2020. Multiple Linear Regression and Genetic Algorithm Approaches to Predict Temporal Scour Depth near Circular Pier in Non-Cohesive Sediment. ISH Journal of Hydraulic Engineering 26 (1): 96–103.
  • Rahimi, E., K. Qaderi, M. Rahimpour, M. M. Ahmadi, and M. R. Madadi. 2020. Scour at Side by Side Pier and Abutment with Debris Accumulation. Marine Georesources & Geotechnology, 1–12. doi:10.1080/1064119x.2020.1716122.
  • Samsudin, R., P. Saad, and A. Shabri. 2011. River Flow Time Series Using Least Squares Support Vector Machines. Hydrology and Earth System Sciences 15 (6): 1835–1852. doi:10.5194/hess-15-1835-2011.
  • Sharaf, H., I. Ebtehaj, H. Bonakdari, and A. H. Zaji. 2016. Design of a Support Vector Machine with Different Kernel Functions to Predict Scour Depth around Bridge Piers. Natural Hazards 84 (3): 2145–2162. doi:10.1007/s11069-016-2540-5.
  • Smola, A. J. 1996. Regression Estimation with Support Vector Learning Machines. Master’s Thesis. Technische Universitt München, Germany.
  • Sreedhara, B. M., and S. Mandal. 2019. Swarm Intelligence-Based Support Vector Machine (PSO-SVM) Approach in the Prediction of Scour Depth around the Bridge Pier. In Soft Computing for Problem Solving, 455–463. Singapore: Springer.
  • U.S. Dept. of Transportation (DOT). 1993. Evaluating scour at bridges. Federal Highway Administration, U.S. Dept. of Transportation, McLean, VA.
  • U.S. Dept. of Transportation (DOT). 2003. Bridge Scour in Non-uniform Sediment Mixtures and in Cohesive Materials: Synthesis Report. Federal Highway Administration, U.S. Dept. of Transportation, McLean, VA.
  • Vairappan, C., H. Tamura, S. Gao, and Z. Tan. 2009. Batch Type Local Search-Based Adaptive Neuro-Fuzzy Inference System (ANFIS) with Self-Feedbacks for Time- Series Prediction. Neurocomputing 72 (7–9): 1870–1877. doi:10.1016/j.neucom.2008.05.010.
  • Vapnik, V. 1995. The Nature of Statistical Learning Theory. New York: Springer-Verlag.
  • Zounemat-Kermani, M., A. A. Beheshti, B. Ataie-Ashtiani, and S. R. Sabbagh-Yazdi. 2009. Estimation of Current-Induced Scour Depth around Pile Groups Using Neural Network and Adaptive Neuro-Fuzzy Inference System. Applied Soft Computing 9 (2): 746–755. doi:10.1016/j.asoc.2008.09.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.