336
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the mechanical properties of a calcareous sand: the role of the initial fabric

ORCID Icon, &
Pages 859-875 | Received 26 Mar 2020, Accepted 16 May 2020, Published online: 08 Jun 2020

References

  • Alim, M. A., K. Suzuki, and K. Iwashita. 2006. Effect of Confining Pressure on the Strength Behavior of Granular Material Simulated by the Discrete Element Method. In Proceedings of the 10th IAEG International Congress, IAEG2006, Nottingham.
  • Benahmed, N., J. Canou, and J. C. Dupla. 2015. Liquefaction Properties and Initial Structure of a Loose Sand. In Proceedings of the 6th International Conference on Earthquake Geotechnical Engineering, 1–4.
  • Brooker, E. W., and H. O. Ireland. 1965. Earth Pressures at Rest Related to Stress History. Canadian Geotechnical Journal 2 (1): 1–15. doi:10.1139/t65-001.
  • Casagrande, A. 1975. Liquefaction and Cyclic Deformation of Sands: A Critical Review. In Proceedings of the Pan-American Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, Vol. 5, 79–133.
  • Castro, G. 1975. Liquefaction and Cyclic Mobility of Saturated Sands. J. Geotech. Engrg. Div 101 (GT6): 551–569.
  • Castro, G., and S. J. Poulos. 1977. Factors Affecting Liquefaction and Cyclic Mobility. Journal of Geotechnical and Geoenvironmental Engineering 103 (6): 501–516.
  • Chang, N., G. Heymann, and C. Clayton. 2011. The Effect of Fabric on the Behaviour of Gold Tailings. Géotechnique 61 (3): 187–197. doi:10.1680/geot.9.P.066.
  • Chu, J., and C. L. Gan. 2004. Effect of Void Ratio on K0 of Loose Sand. Géotechnique 54 (4): 285–288. doi:10.1680/geot.2004.54.4.285.
  • Escribano, D. E., and D. F. T. Nash. 2015. Changing Anisotropy of G0 in Hostun Sand during Drained Monotonic and Cyclic Loading. Soils and Foundations 55 (5): 974–984. doi:10.1016/j.sandf.2015.09.004.
  • Ezaoui, A., and H. Di Benedetto. 2009. Experimental Measurements of the Global Anisotropic Elastic Behaviour of Dry Hostun Sand during Triaxial Tests, and Effect of Sample Preparation. Géotechnique 59 (7): 621–635. doi:10.1680/geot.7.00042.
  • Flitti, A., N. Della, T. De Kock, V. Cnudde, and R. D. Verástegui-Flores. 2019. Effect of Initial Fabric on the Undrained Response of Clean Chlef Sand. European Journal of Environmental and Civil Engineering : 1–16. doi:10.1080/19648189.2019.1631217.
  • Fourie, A. B., and L. Tshabalala. 2005. Initiation of Static Liquefaction and the Role of K 0 Consolidation. Canadian Geotechnical Journal 42 (3): 892–906. doi:10.1139/t05-026.
  • Frost, J. D., and J. Y. Park. 2003. A Critical Assessment of the Moist Tamping Technique. Geotechnical Testing Journal. 26 (1): 57–70.
  • Fu, P., and Y. F. Dafalias. 2011. Study of Anisotropic Shear Strength of Granular Materials Using DEM Simulation. International Journal for Numerical and Analytical Methods in Geomechanics 35 (10): 1098–1126. doi:10.1002/nag.945.
  • Fukushima, S., and F. Tatsuoka. 1984. Strength and Deformation Characteristics of Saturated Sand at Extremely Low Pressures. Soils and Foundations 24 (4): 30–48. doi:10.3208/sandf1972.24.4_30.
  • Ghionna, V. N., and D. Porcino. 2006. Liquefaction Resistance of Undisturbed and Reconstituted Samples of a Natural Coarse Sand from Undrained Cyclic Triaxial Tests. Journal of Geotechnical and Geoenvironmental Engineering 132 (2): 194–202. doi:10.1061/(ASCE)1090-0241(2006)132:2(194).
  • Giretti, D., V. Fioravante, K. Been, and S. Dickenson. 2018. Mechanical Properties of a Carbonate Sand from a Dredged Hydraulic Fill. Géotechnique 68 (5): 410–420. doi:10.1680/jgeot.16.P.304.
  • Gu, X., J. Hu, M. Huang, and J. Yang. 2018. Discrete Element Analysis of the K0 of Granular Soil and Its Relation to Small Strain Shear Stiffness. International Journal of Geomechanics 18 (3): 06018003. doi:10.1061/(ASCE)GM.1943-5622.0001102.
  • Hossain, A. M., and R. D. Andrus. 2016. At-Rest Lateral Stress Coefficient in Sands from Common Field Methods. Journal of Geotechnical and Geoenvironmental Engineering 142 (12): 06016016. doi:10.1061/(ASCE)GT.1943-5606.0001560.
  • Hyodo, M., A. F. L. Hyde, and N. Aramaki. 1998. Liquefaction of Crushable Soils. Géotechnique 48 (4): 527–543. doi:10.1680/geot.1998.48.4.527.
  • Hyodo, M., A. F. Hyde, N. Aramaki, and Y. Nakata. 2002. Undrained Monotonic and Cyclic Shear Behaviour of Sand under Low and High Confining Stresses. Soils and Foundations 42 (3): 63–76. doi:10.3208/sandf.42.3_63.
  • Ishihara, Kenji, Fumio Tatsuoka, and Susumu Yasuda. 1975. Undrained Deformation and Liquefaction of Sand under Cyclic Stresses. Soils and Foundations 15 (1): 29–44. doi:10.3208/sandf1972.15.29.
  • Kwan, W. S., and C. E. Mohtar. 2018. A Review on Sand Sample Reconstitution Methods and Procedures for Undrained Simple Shear Test. International Journal of Geotechnical Engineering. : 1–9. doi:10.1080/19386362.2018.1461988.
  • Ladd, R. S. 1978. Preparing Test Specimens Using Undercompaction. Geotechnical Testing Journal 1 (1): 16–23. doi:10.1520/GTJ10364J.
  • LaVielle, T. H. 2008. Liquefaction Susceptibility of Uncemented Calcareous Sands from Puerto Rico by Cyclic Triaxial Testing. Master diss., Virginia Tech.
  • Leroueil, S., and P. R. Vaughan. 1990. The General and Congruent Effects of Structure in Natural Soils and Weak Rocks. Géotechnique 40 (3): 467–488. doi:10.1680/geot.1990.40.3.467.
  • Li, Y., Y. Yang, H. S. Yu, and G. Roberts. 2018. Effect of Sample Reconstitution Methods on the Behaviors of Granular Materials under Shearing. Journal of Testing and Evaluation 46 (6): 20170126–20172725. doi:10.1520/JTE20170126.
  • Ma, W., G. Chen, and Q. Wu. 2019. Experimental Study on Liquefaction Characteristics of Saturated Coral Sand in Nansha Islands under Cyclic Loading. In Proceedings of the 17th European Conference on Soil Mechanics and Geotechnical Engineering, Reykjavik.
  • Mahmoudi, Y., A. Cherif Taiba, M. Belkhatir, A. Arab, and T. Schanz. 2018. Laboratory Study on Undrained Shear Behaviour of Overconsolidated Sand–Silt Mixtures: effect of the Fines Content and Stress State. International Journal of Geotechnical Engineering 12 (2): 118–132. doi:10.1080/19386362.2016.1252140.
  • Michalowski, R. L. 2005. Coefficient of Earth Pressure at Rest. Journal of Geotechnical and Geoenvironmental Engineering 131 (11): 1429–1433. doi:10.1061/(ASCE)1090-0241(2005)131:11(1429).
  • Miura, S., and S. Toki. 1982. A Sample Preparation Method and Its Effect on Static and Cyclic Deformation-Strength Properties of Sand. Soils and Foundations 22 (1): 61–77. doi:10.3208/sandf1972.22.61.
  • Murthy, T. G., D. Loukidis, J. A. H. Carraro, M. Prezzi, and R. Salgado. 2007. Undrained Monotonic Response of Clean and Silty Sands. Géotechnique 57 (3): 273–288. doi:10.1680/geot.2007.57.3.273.
  • Northcutt, S., and D. Wijewickreme. 2013. Effect of Particle Fabric on the Coefficient of Lateral Earth Pressure Observed during One-Dimensional Compression of Sand. Canadian Geotechnical Journal 50 (5): 457–466. doi:10.1139/cgj-2012-0162.
  • Pando, M. A., E. A. Sandoval, and J. Catano. 2012. Liquefaction Susceptibility and Dynamic Properties of Calcareous Sands from Cabo Rojo, Puerto Rico. In Proceedings of the 15th World Conference on Earthquake Engineering.
  • Piriyakul, K., and W. Haegeman. 2005. Automated K0 Consolidation in Stress Path Cell. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering. Osaka, Japan, 575.
  • Porcino, D., G. Caridi, and V. N. Ghionna. 2008. Undrained Monotonic and Cyclic Simple Shear Behaviour of Carbonate Sand. Géotechnique 58 (8): 635–644. doi:10.1680/geot.2007.00036].
  • Rabbi, A. T. M. Z., M. M. Rahman, and D. A. Cameron. 2018. Undrained Behavior of Silty Sand and the Role of Isotropic and K0 Consolidation. Journal of Geotechnical and Geoenvironmental Engineering 144 (4): 04018014. doi:10.1061/(ASCE)GT.1943-5606.0001859.
  • Sadrekarimi, A., and S. M. Olson. 2012. Effect of Sample-Preparation Method on Critical-State Behavior of Sands. Geotechnical Testing Journal 35 (4): 104317–104562. doi:10.1520/GTJ104317.
  • Salem, M., H. Elmamlouk, and S. Agaiby. 2013. Static and Cyclic Behavior of North Coast Calcareous Sand in Egypt. Soil Dynamics and Earthquake Engineering 55: 83–91. doi:10.1016/j.soildyn.2013.09.001.
  • Shahnazari, H., Y. Jafarian, M. A. Tutunchian, and R. Rezvani. 2016. Undrained Cyclic and Monotonic Behavior of Hormuz Calcareous Sand Using Hollow Cylinder Simple Shear Tests. International Journal of Civil Engineering 14 (4): 209–219. doi:10.1007/s40999-016-0021-6.
  • Sharma, S. S., and M. A. Ismail. 2006. Monotonic and Cyclic Behavior of Two Calcareous Soils of Different Origins. Journal of Geotechnical and Geoenvironmental Engineering, 132 (12): 1581–1591. doi:10.1061/(ASCE)1090-0241(2006)132:12(1581).
  • Shi, J., W. Haegeman, and V. Cnudde. 2020. Anisotropic Small Strain Stiffness of Calcareous Sand Affected by Sample Preparation, Particle Characteristic and Gradation. Géotechnique. doi:10.1680/jgeot.18.P.348.
  • Shi, J., W. Haegeman, A. Mascini, and V. Cnudde. 2019. X-Ray Analysis on the Effect of Sample Preparation on the Microstructure of Calcareous Sands. Marine Georesources and Geotechnology 10.1080/1064119X.2019.1698680.
  • Sze, H. Y., and J. Yang. 2014. Failure Modes of Sand in Undrained Cyclic Loading: impact of Sample Preparation. Journal of Geotechnical and Geoenvironmental Engineering 140 (1): 152–169. doi:10.1061/(ASCE)GT.1943-5606.0000971.
  • Tatsuoka, F., K. Ochi, S. Fujii, and M. Okamoto. 1986. Cyclic Undrained Triaxial and Torsional Shear Strength of Sands for Different Sample Preparation Methods. Soils and Foundations 26 (3): 23–41. doi:10.3208/sandf1972.26.3_23.
  • Thomson, P. R., and R. C. K. Wong. 2008. Specimen Nonuniformities in Water-Pluviated and Moist-Tamped Sands under Undrained Triaxial Compression and Extension. Canadian Geotechnical Journal 45 (7): 939–956. doi:10.1139/T08-023.
  • Tong, Z., P. Fu, S. Zhou, and Y. F. Dafalias. 2014. Experimental Investigation of Shear Strength of Sands with Inherent Fabric Anisotropy. Acta Geotechnica 9 (2): 257–275. doi:10.1007/s11440-014-0303-6.
  • Vaid, S. Sivathayalan, and D. Stedman. 1999. Influence of Specimen-Reconstituting Method on the Undrained Response of Sand. Geotechnical Testing Journal 22 (3): 187–195. doi:10.1520/GTJ11110J.
  • Van Impe, P. O., W. F. Van Impe, A. Manzotti, P. Mengé, M. Van den Broeck, and K. Vinck. 2015. Compaction Control and Related Stress–Strain Behaviour of off-Shore Land Reclamations with Calcareous Sands. Soils and Foundations 55 (6): 1474–1486. doi:10.1016/j.sandf.2015.10.012.
  • Wichtmann, T., K. Steller, and T. Triantafyllidis. 2020. On the Influence of the Sample Preparation Method on Strain Accumulation in Sand under High-Cyclic Loading. Soil Dynamics and Earthquake Engineering 131: 106028. doi:10.1016/j.soildyn.2019.106028.
  • Yamamuro, J. A., and F. M. Wood. 2004. Effect of Depositional Method on the Undrained Behavior and Microstructure of Sand with Silt. Soil Dynamics and Earthquake Engineering 24 (9-10): 751–760. doi:10.1016/j.soildyn.2004.06.004.
  • Yamashita, S., and S. Toki. 1993. Effects of Fabric Anisotropy of Sand on Cyclic Undrained Triaxial and Torsional Strengths. Soils and Foundations 33 (3): 92–104. doi:10.3208/sandf1972.33.3_92.
  • Yang, Z. X., X. S. Li, and J. Yang. 2008. Quantifying and Modelling Fabric Anisotropy of Granular Soils. Géotechnique 58 (4): 237–248. doi:10.1680/geot.2008.58.4.237.
  • Yimsiri, S., and K. Soga. 2010. DEM Analysis of Soil Fabric Effects on Behaviour of Sand. Géotechnique 60 (6): 483–495. doi:10.1680/geot.2010.60.6.483.
  • Zeng, X., and B. Ni. 1999. Stress-induced anisotropic Gmax of sands and its measurement. Journal of Geotechnical and Geoenvironmental Engineering, 125(9): 741–749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.