458
Views
3
CrossRef citations to date
0
Altmetric
Articles

Regional and fine-scale variability in composition and structure of hydrogenetic ferromanganese crusts: Geological characterization of 25 drill cores from the Marcus-Wake seamounts

&
Pages 415-437 | Received 16 Dec 2020, Accepted 12 Mar 2021, Published online: 08 May 2021

References

  • Amakawa, H., A. Usui, K. Iijima, and K. Suzuki. 2017. Surface Layer Nd Isotopic Composition of Ferromanganese Crusts Collected from the Takuyo-Daigo Seamount Reflects Ambient Seawater. Geochemical Journal 51 (1): e1–e7. doi:https://doi.org/10.2343/geochemj.2.0463.
  • Bau, M., K. Schmidt, A. Koschinsky, J. Hein, T. Kuhn, and A. Usui. 2014. Discriminating between Different Genetic Types of Marine Ferro-Manganese Crusts and Nodules Based on Rare Earth Elements and Yttrium. Chemical Geology 381: 1–9. doi:https://doi.org/10.1016/j.chemgeo.2014.05.004.
  • Benites, M., J. R. Hein, K. Mizell, T. Blackburn, and L. Jovane. 2020. Genesis and Evolution of Ferromanganese Crusts from the Summit of Rio Grande Rise, Southwest Atlantic Ocean. Minerals 10 (4): 349. doi:https://doi.org/10.3390/min10040349.
  • Bodenmann, A., B. Thornton, and T. Ura. 2017. Generation of High-Resolution Three-Dimensional Reconstructions of the Seafloor in Color Using a Single Camera and Structured Light. Journal of Field Robotics 34 (5): 833–851. doi:https://doi.org/10.1002/rob.21682.
  • Bogdanov, Y. A., O. Y. Bogdanova, A. V. Dubinin, A. Gorand, A. I. Gorshkov, E. G. Gurvich, A. B. Isaeva, G. V. Ivanov, L. F. Jansa, and A. Monaco. 1995. Composition of Ferromanganese Crusts and Nodules at Northwestern Pacific Guyots and Geologic and Paleoceanographic Considerations. Proceedings of the Ocean Drilling Program, Scientific Results 144: 745–768.
  • DeLaughter, J. E., C. A. Stein, and S. Stein. 2005. Hotspots: A View from the Swells. Geological Society of America 388: 257–278.
  • Du, D., X. Ren, S. Yan, X. Shi, Y. Liu, and G. He. 2017. An Integrated Method for the Quantitative Evaluation of Mineral Resources of Cobalt-Rich Crusts on Seamounts. Ore Geology Reviews 84: 174–184. doi:https://doi.org/10.1016/j.oregeorev.2017.01.011.
  • Glasby, G. P., B. Mountain, T. C. Vineesh, V. Banakar, R. Rajani, and X. Ren. 2010. Role of Hydrology in the Formation of Co-Rich Mn Crusts from the Equatorial N Pacific, Equatorial S Indian Ocean and the NE Atlantic Ocean. Resource Geology 60 (2): 165–177. doi:https://doi.org/10.1111/j.1751-3928.2010.00123.x.
  • Glasby, G. P., X. Ren, X. Shi, and I. A. Pulyaeva. 2007. Co-Rich Mn Crusts from Magellan Seamount Cluster: The Long Journey through Time. Geo-Marine Letters 27 (5): 315–323. doi:https://doi.org/10.1007/s00367-007-0055-5.
  • Goto, K. T., A. D. Anbar, G. W. Gordon, S. J. Romaniello, G. Shimoda, Y. Takaya, A. Tokumaru, et al. 2014. Uranium Isotope Systematics of Ferromanganese Crusts in the Pacific Ocean: Implications for the Marine 238U/235U Isotope System. Geochimica et Cosmochimica Acta 146 (1): 43–58. doi:https://doi.org/10.1016/j.gca.2014.10.003.
  • Graham, I. J., R. M. Carter, R. G. Ditchburn, and A. Zondervan. 2004. Chronostratigraphy of ODP 181, Site 1121 Sediment Core (Southwest Pascific Ocean), Using Be-10/9 Dating of Entrapped Ferromanganese Nodules. Marine Geology 205 (1-4): 227–247. doi:https://doi.org/10.1016/S0025-3227(04)00025-8.
  • Halbach, P., F. T. Manheim, and P. Otten. 1982. Co-Rich Ferromanganese Deposits in the Marginal Seamount Regions of the Central Pacific Basin-Results of the Midpac 81. Erzmetall 35: 447–453.
  • Halbach, P. E., C. D. Sattler, F. Teichmann, and M. Wahsner. 1989. Cobalt-Rich and Platinum-Bearing Manganese Crust Deposits on Seamounts: Nature, Formation, and Metal Potential. Marine Mining 8 (1): 23–39.
  • Hein, J. R. 2002. Cobalt-Rich Ferromanganese Crusts: Global Distribution, Composition, Origin and Research Activities. Polymetallic Massive Sulphides and Cobalt-Rich Ferromanganese Crusts; Status and Prospects. ISA Technical Study 2: 36–88.
  • Hein, J. R., W. A. Bohrson, M. S. Schulz, M. Noble, and D. A. Clague. 1992. Variations in the Fine‐Scale Composition of a Central Pacific Ferromanganese Crust Paleoceanographic Implications. Paleoceanography & Paleoceanography 7 (1): 63–77. doi:https://doi.org/10.1029/91PA02936.
  • Hein, J. R., T. A. Conrad, and R. E. Dunham. 2009. Seamount Characteristics and Mine-Site Model Applied to Exploration- and Mining-Lease-Block Selection for Cobalt-Rich Ferromanganese Crusts. Marine Georesources & Geotechnology 27 (2): 160–176. doi:https://doi.org/10.1080/10641190902852485.
  • Hein, J. R., T. Conrad, K. Mizel, V. K. Banakar, F. A. Frey, and W. W. Sage. 2016. Controls on Ferromanganese Crust Composition and Reconnaissance Resource Potential. Deep Sea Research Part I: Oceanographic Research Papers 110: 1–19. doi:https://doi.org/10.1016/j.dsr.2015.11.006.
  • Hein, J. R., A. Koschinsky, M. Bau, F. T. Manheim, J.-K. Kang, and L. Roberts. 2000. Cobalt-Rich Ferromanganese Crusts in the Pacific. In: Handbook of Marine Mineral Deposits, ed. D. S. Cronan, 239–279. Boca Raton, FL: CRC Press.
  • Hein, J. R., K. Mizell, A. Koschinsky, and T. A. Conrad. 2013. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High-and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geology Reviews 51: 1–15. doi:https://doi.org/10.1016/j.oregeorev.2012.12.001.
  • Hein, J. R., and C. L. Morgan. 1999. Influence of Substrate Rocks on Fe–Mn Crust Composition. Deep Sea Research Part I: Oceanographic Research Papers 46 (5): 855–875. doi:https://doi.org/10.1016/S0967-0637(98)00097-1.
  • International Seabed Authority. 2012. Regulations on prospecting and exploration for cobalt-rich ferromanganese crusts in the Area. ISA eighteenth session Article. ISBA/18/A/11.
  • Jansa, L. F., and A. A. Vanneau. 1995. Carbonate Buildup and Sea-Level Changes at MIT Guyot, Western Pacific. Proceedings of the Ocean Drilling Program. Scientific Results 144: 311–335.
  • Jeong, K. S., H. S. Jung, J. K. Kang, C. L. Morgan, and J. R. Hein. 2000. Formation of Ferromanganese Crusts on Northwest Intertropical Pacific Seamounts: Electron Photomicrography and Microprobe Chemistry. Marine Geology 162 (2-4): 541–559. doi:https://doi.org/10.1016/S0025-3227(99)00091-2.
  • Joo, J., S. S. Kim, J. W. Choi, S. K. Pak, Y. Ko, S. K. Son, J. W. Moon, and J. Kim. 2020. Seabed Mapping Using Shipboard Multibeam Acoustic Data for Assessing the Spatial Distribution of Ferromanganese Crusts on Seamounts in the Western Pacific. Minerals 10 (2): 155. doi:https://doi.org/10.3390/min10020155.
  • Josso, P., I. Parkinson, M. Horstwood, P. Lusty, S. Chenery, and B. Murton. 2019. Improving Confidence in Ferromanganese Crust Age Models: A Composite Geochemical Approach. Chemical Geology 513 (20): 108–119. doi:https://doi.org/10.1016/j.chemgeo.2019.03.003.
  • Josso, P., J. Rushton, P. Lusty, A. Matthews, S. Chenery, D. Holwell, S. J. Kemp, and B. Murton. 2020. Late Cretaceous and Cenozoic Paleoceanography from North-East Atlantic Ferromanganese Crust Microstratigraphy. Marine Geology 422: 106122. doi:https://doi.org/10.1016/j.margeo.2020.106122.
  • Kashiwabara, T., Y. Takahashi, M. A. Marcus, T. Uruga, H. Tanida, Y. Terada, and A. Usui. 2013. Tungsten Species in Natural Ferromanganese Oxides Related to Its Different Behavior from Molybdenum in Oxic Ocean. Geochimica et Cosmochimica Acta 106: 364–378. doi:https://doi.org/10.1016/j.gca.2012.12.026.
  • Kato, S., T. Okumura, K. Uematsu, M. Hirai, K. Iijima, A. Usui, and K. Suzuki. 2018. Heterogeneity of Microbial Communities on Deep-Sea Ferromanganese Crusts in the Takuyo-Daigo Seamount. Microbes and Environments 33 (4): 366–377. doi:https://doi.org/10.1264/jsme2.ME18090.
  • Kim, J., K. Hyeong, H. Jung-Soo, J. W. Moon, K.-H. Kim, and I. Lee. 2006. Southward Shift of the Intertropical Convergence Zone in the Western Pacific during the Late Tertiary: Evidence from Ferromanganese Crusts on Seamounts West of the Marshall Islands. Paleoceanography and Paleoceanography 21 (4): PA4218. doi:https://doi.org/10.1029/2006PA001291.
  • Kim, S.-S., and P. Wessel. 2011. New Global Seamount Census from the Altimetry-Derived Gravity Data. Geophysical Journal International 186 (2): 615–631. doi:https://doi.org/10.1111/j.1365-246X.2011.05076.x.
  • Kisimoto, K., A. Usui, K. Yamaoka, M. Yuasa, A. Suzuki, and A. Nishimura. 2017. Marine Polymeallic Mineral Deposits in the Vicinity of the Japanese Islands, Northwestern Pacific. One Sheet and Explanatory Text. Geological Survey of Japan Misc. Map Ser. 33.
  • Klemm, V., S. Levasseur, M. Frank, J. R. Hein, and A. N. Halliday. 2005. Osmium Isotope Stratigraphy of a Marine Ferromanganese Crust. Earth and Planetary Science Letters 238 (1-2): 42–48. doi:https://doi.org/10.1016/j.epsl.2005.07.016.
  • Koppers, A. A. P., H. Staudigel, J. R. Wijbrans, and M. S. Pringle. 1998. The Magellan Seamount Trail: Implications for Cretaceous Hotspot Volcanism and Absolute Pacific Plate Motion. Earth and Planetary Science Letters 163 (1-4): 53–68. doi:https://doi.org/10.1016/S0012-821X(98)00175-7.
  • Koppers, A. A. P., H. Staudigel, M. S. Pringle, and J. R. Wijbrans. 2003. Short-Lived and Discontinuous Intraplate Volcanism in the South Pacific: Hot Spots or Extensional Volcanism? Geochemistry, Geophysics, Geosystems 4 (10): 1–49.
  • Koschinsky, A., and P. Halbach. 1995. Sequential Leaching of Marine Ferromanganese Precipitates: Genetic Implications. Geochimica et Cosmochimica Acta 59 (24): 5113–5132. doi:https://doi.org/10.1016/0016-7037(95)00358-4.
  • Koschinsky, A., A. Stascheit, M. Bau, and P. Halbach. 1997. Effects of Phosphatization on the Geochemical and Mineralogical Composition of Marine Ferromanganese Crusts. Geochimica et Cosmochimica Acta 61 (19): 4079–4094. doi:https://doi.org/10.1016/S0016-7037(97)00231-7.
  • Larson, R. L., E. Erba, M. Nakanishi, D. D. Bergersen, and J. M. Lincoln. 1995. Stratigraphic, Vertical Subsidence, and Paleolatitude Histories of Leg 144 Guyots. Proceedings of the Ocean Drilling Program, Scientific Results 144: 915–933.
  • Lincoln, J. M., M. S. Pringle, and S. I. Premoli. 1993. Early and Late Cretaceous Volcanism and Reef-Building in the Marshall Islands. AGU Geophysical Monograph 77: 279–305.
  • Lodge, M., and V. Ryabinin. 2019. Deep Sea Marine Science Is Key to Unlocking the Potential of Our Oceans. ISA Opinion Piece 15 May 2019. https://isa.org.jm/node/19123
  • Marino, E., F. J. González, R. Lunar, J. Reyes, T. Medialdea, M. Castillo-Carrión, E. Bellido, and L. Somoza. 2018. High-Resolution Rnalysis of Critical Minerals and Elements in Fe–Mn Crusts from the Canary Island Seamount Province (Atlantic Ocean). Minerals 8 (7): 285. doi:https://doi.org/10.3390/min8070285.
  • Morgan, C., D. Larson, and J. Wiltshire. 1994. Deep Seabed Rock Dredging in Areas with High Relief. Marine Georesources & Geotechnology 12 (3): 227–236. doi:https://doi.org/10.1080/10641199409388264.
  • Nakanishi, M., and J. S. Gee. 1995. Paleomagnetic Investigations of Volcanic Rocks: Paleolatitudes of the Northwestern Pacific Guyots. Proceedings of the Ocean Drilling Program, Scientific Results 144: 585–604.
  • Nishi, K., A. Usui, Y. Nakasato, and H. Yasuda. 2017. Formation Age of the Dual Structure and Environmental Change Recorded in Hydrogenetic Ferromanganese Crusts from Northwest and Central Pacific Seamounts. Ore Geology Reviews 87: 62–70. doi:https://doi.org/10.1016/j.oregeorev.2016.09.004.
  • Nishiizumi, K., M. Imamura, M. W. Caffee, J. R. Southon, R. C. Finke, and J. McAninch. 2007. Absolute Calibration of Be-10 AMS Standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258 (2): 403–413. doi:https://doi.org/10.1016/j.nimb.2007.01.297.
  • Nitahara, S., S. Kato, A. Usui, T. Urabe, K. Suzuki, and A. Yamagishi. 2017. Archaeal and Bacterial Communities in Deep-Sea Hydrogenetic Ferromanganese Crusts on Old Seamounts of the Northwestern Pacific. PLoS One 12 (2): e0173071. doi:https://doi.org/10.1371/journal.pone.0173071.
  • Noguchi, A., Y. Yamamoto, K. Nishi, A. Usui, and H. Oda. 2017. Paleomagnetic Study of Ferromanganese Crusts Recovered from the Northwest Pacific—Testing the Applicability of the Magnetostratigraphic Method to Estimate Growth Rate. Ore Geology Reviews 87: 16–24. doi:https://doi.org/10.1016/j.oregeorev.2016.07.018.
  • Oda, H., A. Usui, I. Miyagi, M. Joshima, B. P. Weiss, C. Shantz, L. E. Fong, K. K. McBride, R. Harder, and F. J. Baudenbacher. 2011. Ultrafine-Scale Magnetostratigraphy of Marine Ferromanganese Crust. Geology 39 (3): 227–230. doi:https://doi.org/10.1130/G31610.1.
  • Okamoto, N., and A. Usui. 2014. Regional Distribution of Co-Rich Ferromanganese Crusts and Evolution of the Seamounts in the Northwestern Pacific. Marine Georesources & Geotechnology 32 (3): 187–206. doi:https://doi.org/10.1080/1064119X.2013.877110.
  • Pringle, M. S., and R. A. Duncan. 1995. Radiometric Ages of Basement Lavas Recovered at Loen, Wodejebato, MIT, and Takuyo-Daisan Guyots, Northwestern Pacific Ocean. Proceedings of the Ocean Drilling Program. Scientific Results 144: 547–557.
  • Ren, X., G. P. Glasby, J. Liu, X. Shi, and J. Yin. 2007. Fine-Scale Compositional Variations in a Co-Rich Mn Crust from the Marcus-Wake Seamount Cluster in the Western Pacific Based on Electron Microprobe Analysis (EMPA). Marine Geophysical Researches 28 (2): 165–182. doi:https://doi.org/10.1007/s11001-007-9024-7.
  • Rona, P. A. 2003. Geology. Resources of the Sea Floor. Science 299 (5607): 673–674. doi:https://doi.org/10.1126/science.1080679.
  • Sager, W. W., R. A. Duncun, and D. W. Handshumacher. 1993. Paleomagnetism of the Japanese and Marcus-Wake Seamounts, Western Pacific Ocean. AGU Monograph 77: 401–435.
  • Sato, H., and A. Usui. 2018. Metal Flux as an Alternative Parameter in Evaluating the Resource Potential for Co-Rich Ferromanganese Crusts. Marine Georesources & Geotechnology 36 (7): 768–780. doi:https://doi.org/10.1080/1064119X.2017.1378781.
  • Smith, W. H. F., H. Staudigel, A. B. Watts, and M. S. Pringle. 1989. The Magellan Seamounts: Early Cretaceous Record of the South Pacific Isotopic and Thermal Anomaly. Journal of Geophysical Research: Solid Earth 94 (B8): 10501–10523. doi:https://doi.org/10.1029/JB094iB08p10501.
  • Smoot, N. C. 1989. The Marcus-Wake Seamounts and Guyots as Paleofracture Indicators and Their Relation to the Dutton Ridge. Marine Geology 88 (1-2): 117–131. doi:https://doi.org/10.1016/0025-3227(89)90008-X.
  • Takahashi, Y., A. Manceau, N. Geoffroy, M. A. Marcus, and A. Usui. 2007. Chemical and Structural Control of the Partitioning of Co, Ce, and Pb in Marine Ferromanganese Oxide. Geochimica et Cosmochimica Acta 71 (4): 984–1008. doi:https://doi.org/10.1016/j.gca.2006.11.016.
  • Tokumaru, A., T. Nozaki, K. Suzuki, K. T. Goto, Q. Chang, J. I. Kimura, Y. Takaya, Y. Kato, A. Usui, and T. Urabe. 2015. Re–Os Isotope Geochemistry in the Surface Layers of Ferromanganese Crusts from the Takuyo Daigo Seamount, Northwestern Pacific Ocean. Geochemical Journal 49 (3): 233–241. doi:https://doi.org/10.2343/geochemj.2.0352.
  • Uramoto, G.-I., Y. Morono, N. Tomioka, S. Wakaki, R. Nakada, R. Wagai, K. Uesugi, et al. 2019. Significant Contribution of Subseafloor Microparticles to the Global Manganese Budget. Nature Communications 10 (1): 1–10. doi:https://doi.org/10.1038/s41467-019-08347-2.
  • Usui, A., L. J. Graham, R. G. Ditchburn, A. Zondervan, H. Shibasaki, and H. Hishida. 2007. Growth History and Formation Environments of Ferromanganese Deposits on the Philippine Sea Plate, Northwestern Pacific Ocean. Island Arc 16 (3): 420–430. doi:https://doi.org/10.1111/j.1440-1738.2007.00592.x.
  • Usui, A., H. Hino, D. Suzushima, N. Tomioka, Y. Suzuki, M. Sunamura, S. Kato, et al. 2020. Modern Precipitation of Hydrogenetic Ferromanganese Minerals during on-Site 15-Year Exposure Tests. Scientific Reports 10 (1): 3558. doi:https://doi.org/10.1038/s41598-020-60200-5.
  • Usui, A., and T. Ito. 1994. Fossil Manganese Deposits Buried within DSDP/ODP Cores, Legs 1–126. Marine Geology 119 (1-2): 111–136. doi:https://doi.org/10.1016/0025-3227(94)90144-9.
  • Usui, A., and N. Okamoto. 2010. Geophysical and Geological Exploration of Cobalt-Rich Ferromanganese Crusts: An Attempt of Small-Scale Mapping on a Micronesian Seamount. Marine Georesources & Geotechnology 28 (3): 192–206. doi:https://doi.org/10.1080/10641190903521717.
  • Usui, A., K. Nishi, H. Sato, Y. Nakasato, B. Thornton, T. Kashiwabara, A. Tokumaru, et al. 2017. Continuous Growth of Hydrogenetic Ferromanganese Crusts since 17 Myr Ago on Takuyo-Daigo Seamount, NW Pacific, at Water Depths of 800–5500 m. Ore Geology Reviews 87: 71–87. doi:https://doi.org/10.1016/j.oregeorev.2016.09.032.
  • Usui, A., and M. Someya. 1997. Distribution and Composition of Marine Hydrogenetic and Hydrothermal Manganese Deposits in the Northwest Pacific. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geol. Soc. London Special Publication 119 (1): 177–198. doi:https://doi.org/10.1144/GSL.SP.1997.119.01.12.
  • Usui, A., and K. Suzuki. 2018. Ferromanganese Crusts in the Northwestern Pacific Seamounts—A Review: Variations in Grade and Abundance on the Regional to Microscopic Scales. Proceedings of the International Offshore and Polar Engineering Conference, Sapporo, Japan, vol. 1, 57–62.
  • Van Waasbergen, R. J., and E. L. Winterer. 1993. Summit Geomorphology of Western Pacific Guyots. AGU Geophysical Monograph 77: 335–366.
  • Whitechurch, H., R. Montigney, J. Sevigny, M. Storey, and V. J. M. Salters. 1992. K-Ar and 40Ar/39Ar Ages of Central Kerguelen Plateau Basalt. Proceedings of the Ocean Drilling Program, Scientific Results 120: 71–77.
  • Winterer, E. L., J. H. Natland, R. J. V. Waasbergen, R. A. Duncan, M. K. Mcnutt, C. J. Wolfe, I. P. Silva, W. W. Sagar, and W. V. Sliter. 1993. Cretaceous Guyots in the Northwest Pacific: An Overview of Their Geology and Geophysics. AGU Geophysical Monograph 77: 307–334.
  • Wright, I. C., I. Graham, S. W. Chang, H. Choi, and S. R. Lee. 2005. Occurrence and Physical Setting of Ferromanganese Nodules beneath the Deep Western Boundary Current, Southwest Pacific Ocean. New Zealand Journal of Geology and Geophysics 48 (1): 27–41. doi:https://doi.org/10.1080/00288306.2005.9515096.
  • Yamazaki, T., and R. Sharma. 1998. Distribution Characteristics of Co-Rich Manganese Deposits on a Seamount in the Central Pacific Ocean. Marine Georesources & Geotechnology 16 (4): 283–305. doi:https://doi.org/10.1080/10641199809379973.
  • Yang, Y., G. He, J. Ma, Z. Yu, H. Yao, X. Deng, F. Liu, and Z. Wei. 2020. Acoustic Quantitative Analysis of Ferromanganese Nodules and Cobalt-Rich Crusts Distribution Areas Using EM122 Multibeam Backscatter Data from Deep-Sea Basin to Seamount in Western Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 161: 103281. doi:https://doi.org/10.1016/j.dsr.2020.103281.
  • Yeo, I. A., K. Dobson, P. Josso, R. B. Pearce, S. A. Howarth, P. A. J. Lusty, T. P. Le Bas, and B. J. Murton. 2018. Assessment of the Mineral Resource Potential of Atlantic Ferromanganese Crusts Based on Their Growth History, Microstructure, and Texture. Minerals 8 (8): 327. doi:https://doi.org/10.3390/min8080327.
  • Yeo, I. A., S. A. Howarth, J. Spearman, A. Cooper, N. Crossouard, J. Taylor, M. Turnbull, and B. J. Murton. 2019. Distribution and Hydrographic Controls on Ferromanganese Crusts: Tropic Seamount. Ore Geology Reviews 114: 103131. doi:https://doi.org/10.1016/j.oregeorev.2019.103131.
  • Zhao, B., Z. Wei, Y. Yang, G. He, H. Zhang, and W. Ma. 2020. Sedimentary Characteristics and the Implications of Cobalt-Rich Crusts Resources at Caiwei Guyot in the Western Pacific Ocean. Marine Georesources & Geotechnology 38 (9): 1037–1045. doi:https://doi.org/10.1080/1064119X.2019.1648615.
  • Zhao, B., Y. Yang, X. Zhang, G. He, W. Lü, Y. Liu, Z. Wei, Y. Deng, and N. Huang. 2020. Sedimentary Characteristics Based on Sub-Bottom Profiling and the Implications for Mineralization of Cobalt-Rich Ferromanganese Crusts at Weijia Guyot, Western Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 158: 103223. doi:https://doi.org/10.1016/j.dsr.2020.103223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.