414
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of organic matter content on Atterberg limits and undrained shear strength of river sediment

, , , &
Pages 1060-1072 | Received 27 Apr 2021, Accepted 26 Jul 2021, Published online: 27 Aug 2021

References

  • Bennett, R. H., L. Lehman, M. H. Hulbert, G. R. Harvey, S. A. Bush, E. B. Forde, P. Crews, and W. B. Sawyer. 1985. Interrelationships of Organic Carbon and Submarine Sediment Geotechnical Properties. Marine Geotechnology 6 (1): 61–98. doi:10.1080/10641198509388180.
  • Berilgen, S. A., H. Klc, and K. Ozaydn. 2007. Determination of undrained shear strength for dredged golden horn marine clay with laboratory tests. Sri Lankan Geotechnical Society's First International Conference on Soil and Rock Engineering. Colombo, Sri Lanka, August 5–11.
  • Bian, X., Z. F. Wang, G. Q. Ding, and Y. P. Cao. 2016. Compressibility of Cemented Dredged Clay at High Water Content with Super-Absorbent Polymer. Engineering Geology 208: 198–205. doi:10.1016/j.enggeo.2016.04.036.
  • Booth, J., and A. Dahl. 1986. A Note on the Relationships between Organic Matter and Some Geotechnical Properties of a Marine Sediment. Marine Geotechnology 6 (3): 281–297. doi:10.1080/10641198609388191.
  • Broms, B. B. 1987. Stabilization of Very Soft Clay Using Geofabric. Geotextiles and Geomembranes 5: 17–28.
  • BS 1377-2. 1990. Methods of Test for Soils for Civil Engineering Purposes Part 2 – Classification Tests, 68. London: British Standards Institution.
  • Busch, W., and G. Keller. 1983. Analysis of Sediment Stability on the Peru-Chile Continental Slope. Marine Geotechnology 5 (2): 181–211. doi:10.1080/10641198309379842.
  • Casagrande, A. 1932. Research on the Atterberg Limits of Soils. Public Roads 13 (8): 121–136.
  • Casagrande, A. 1958. Notes on the Design of the Liquid Limit Device. Géotechnique 8 (2): 84–91. doi:10.1680/geot.1958.8.2.84.
  • Chu, J., M. W. Bo, and A. Arulrajah. 2009. Reclamation of a Slurry Pond in Singapore. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 162 (1): 13–20. doi:10.1680/geng.2009.162.1.13.
  • Develioglu, I., and H. F. Pulat. 2017. Geotechnical Properties and Compressibility Behavior of Organic Dredged Soils. International Journal of Geotechnical and Geological Engineering 11 (2): 204–208.
  • Dexter, A. R., G. Richard, D. Arrouays, E. A. Czyż, C. Jolivet, and O. Duval. 2008. Complexed Organic Matter Controls Soil Physical Properties. Geoderma 144 (3-4): 620–627. doi:10.1016/j.geoderma.2008.01.022.
  • Federico, A. 1983. Relationships (Cu-w) and (Cu-s) for Remolded Clayey Soils at High Water Content. Rivista Italiana di Geotecnica 17 (1): 38–41.
  • Gao, Y. F., S. He, Y. Zhou, and S. M. Wang. 2012. Study on the Unload Interval Time of Thin Plate Penetration Test. Advanced Materials Research 446-449: 2275–2278. doi:10.4028/www.scientific.net/AMR.446-449.2275.
  • Hansbo, S. 1957. A New Approach to Determination of Shear Strength of Clay by the Fall Cone Test. Royal Swedish Geotechnical Institute Proceedings 14: 1–49.
  • Hamouche, F., and R. Zentar. 2020. Effects of Organic Matter on Physical Properties of Dredged Marine Sediments. Waste and Biomass Valorization 11 (1): 389–401. doi:10.1007/s12649-018-0387-6.
  • Haigh, S. K., P. J. Vardanega, and B. C. O’Kelly. 2019. Discussion of 'Factors Influencing Undrained Strength of Fine-Grained Soils at High Water Contents by H.B. Nagaraj, M.V. Sravan and B.S. Deepa. Geomechanics and Geoengineering: 1–3.
  • Hong, Z. S., H. L. Liu, and T. Negami. 2003. Remolded Undrained Strength of Soils. China Ocean Engineering 17 (1): 133–142.
  • Huang, Y., W. Zhu, X. Qian, N. Zhang, and X. Zhou. 2011. Change of Mechanical Behavior between Solidified and Remolded Solidified Dredged Materials. Engineering Geology 119 (3-4): 112–119. doi:10.1016/j.enggeo.2011.03.005.
  • Inoue, T., T. S. Tan, and S. L. Lee. 1990. An Investigation of Shear Strength of Slurry Clay. Soils and Foundations 30 (4): 1–10. doi:10.3208/sandf1972.30.4_1.
  • Jong, E. D., D. F. Acton, and H. B. Stonehouse. 1990. Estimating the Atterberg Limits of Southern Saskatchewan Soils from Texture and Carbon Contents. Canadian Journal of Soil Science 70 (4): 543–554. doi:10.4141/cjss90-057.
  • Kamali, S., F. Bernard, N. E. Abriak, and P. Degrugilliers. 2008. Marine Dredged Sediments as New Materials Resource for Road Construction. Waste Management 28 (5): 919–928.
  • Karakouzian, M., B. B. Avar, N. Hudyma, and J. A. Moss. 2003. Field Measurements of Shear Strength of an Underconsolidated Marine Clay. Engineering Geology 67 (3-4): 233–242. doi:10.1016/S0013-7952(02)00182-5.
  • Karlsson, R. 1961. Suggested Improvements in the Liquid Limit Test, with Reference to Flow Properties of Remoulded Clays. Proceedings of the 5th International Conference on Soil Mechanics and Foundational Engineering, Paris 1: 171–184.
  • Kaya, A., and H. Y. Fang. 2000. The Effects of Organic Fluids on Physicochemical Parameters of Fine-Grained Soils. Canadian Geotechnical Journal 37 (5): 943–950. doi:10.1139/t00-023.
  • Keller, G. H. 1982. Organic Matter and the Geotechnical Properties of Submarine Sediments. Geo-Marine Letters 2 (3-4): 191–198. doi:10.1007/BF02462762.
  • Koumoto, T., and G. T. Houlsby. 2001. Theory and Practice of the Fall Cone Test. Géotechnique 51 (8): 701–712. doi:10.1680/geot.2001.51.8.701.
  • Kuriakose, B., B. M. Abraham, A. Sridharan, and B. T. Jose. 2017. Water Content Ratio: An Effective Substitute for Liquidity Index for Prediction of Shear Strength of Clays. Geotechnical and Geological Engineering 35 (4): 1577–1586. doi:10.1007/s10706-017-0193-0.
  • Lee, L. T., and R. B. Freeman. 2009. Dual-Weight Fall Cone Method for Simultaneous Liquid Limit Determination. Journal of Geotechnical and Geoenvironmental Engineering 135 (1): 158–161. doi:10.1061/(ASCE)1090-0241(2009)135:1(158).
  • Leroueil, S., F. Tavenas, and J. P. L. Bihan. 1983. Propriétés Caractéristiques Des Argiles de L'est du Canada. Canadian Geotechnical Journal 20 (4): 681–705. doi:10.1139/t83-076.
  • Locat, J., and D. Demers. 1988. Viscosity, Yield Stress, Remolded Strength, and Liquidity Index Relationships for Sensitive Clays. Canadian Geotechnical Journal 25 (4): 799–806. doi:10.1139/t88-088.
  • Lu, T., and W. R. Bryant. 1997. Comparison of Vane Shear and Fall Cone Strengths of Soft Marine Clay. Marine Georesources & Geotechnology 15 (1): 67–82. doi:10.1080/10641199709379935.
  • Malkawi, A. I. H., A. S. Alawneh, and O. T. Abu-Safaqah. 1999. Effects of Organic Matter on the Physical and the Physicochemical Properties of an Illitic Soil. Applied Clay Science 14 (5-6): 257–278. doi:10.1016/S0169-1317(99)00003-4.
  • Mitchell, K., and K. Soga. 2005. Fundamentals of Soil Behavior. New York: John Wiley & Sons.
  • Nagaraj, H. B., A. Sridharan, and H. M. Mallikarjuna. 2012. Re-Examination of Undrained Strength at Atterberg Limits Water Contents. Geotechnical and Geological Engineering 30 (4): 727–736. doi:10.1007/s10706-011-9489-7.
  • Nagaraj, H. B., M. V. Sravan, and B. S. Deepa. 2018. Factors Influencing Undrained Strength of Fine-Grained Soils at High Water Contents. Geomechanics and Geoengineering 13 (4): 276–287. doi:10.1080/17486025.2018.1445873.
  • Odell, R. T., T. H. Thornburn, and L. J. Mckenzie. 1960. Relationships of Atterberg Limits to Some Other Properties of Illinois Soils. Soil Science Society of America Journal 24 (4): 297–300. doi:10.2136/sssaj1960.03615995002400040025x.
  • Ohtsubo, M., K. Egashira, and K. Kashima. 1995. Depositional and Post-Depositional Geochemistry, and Its Correlation with the Geotechnical Properties of Marine Clays in Ariake Bay, Japan. Géotechnique 45 (3): 509–523. doi:10.1680/geot.1995.45.3.509.
  • O’Kelly, B. C. 2006. Geotechnical Properties of Municipal Sewage Sludge. Geotechnical and Geological Engineering 24 (4): 833–850. doi:10.1007/s10706-005-6611-8.
  • O’Kelly, B. C. 2010. Landfill Disposal of Alum Water Treatment Residues: some Pertinent Geoengineering Properties. Journal of Residuals Science and Technology 7 (2): 95–113.
  • O’Kelly, B. C. 2014. Characterisation and Undrained Strength of Amorphous Clay. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 167 (3): 311–320.
  • O'Kelly, B. C., and V. Sivakumar. 2014. Water Content Determinations for Peat and Other Organic Soils Using the Oven-Drying Method. Drying Technology 32 (6): 631–643. doi:10.1080/07373937.2013.849728.
  • O’Kelly, B. C. 2015. Atterberg Limits Are Not Appropriate for Peat Soils. Geotechnical Research 2 (3): 123–134. doi:10.1680/jgere.15.00007.
  • Olgun, M., and M. Yildiz. 2010. Effect of Organic Fluids on the Geotechnical Behavior of a Highly Plastic Clayey Soil. Applied Clay Science 48 (4): 615–621. doi:10.1016/j.clay.2010.03.015.
  • Palomino, A. M., S. E. Burns, and J. C. Santamarina. 2008. Mixtures of Fine-Grained Minerals-Kaolinite and Carbonate Grains. Clays and Clay Minerals 56 (6): 599–611. doi:10.1346/CCMN.2008.0560601.
  • Paul, M. A., and B. F. Barras. 1999. Role of Organic Material in the Plasticity of Bothkennar Clay. Géotechnique 49 (4): 529–535. doi:10.1680/geot.1999.49.4.529.
  • Rabbee, T., and I. M. Rafizul. 2012. Strength and Compressibility Characteristics of Reconstituted Organic Soil at Khulna Region of Bangladesh. International Journal of Engineering and Technology 2 (10): 1672–1681.
  • Randolph, M. F., D. J. White, N. Boukpeti, and H. E. Low. 2012. Strength of Fine-Grained Soils at the Solid-Fluid Transition. Géotechnique 62 (3): 213–226. doi:10.1680/geot.9.P.069.
  • Romilus, P. 2004. Effect of Organic Contents on the Compaction and Shear Strength of Soil. Minerva Anestesiologica 44 (12): 1023–1027.
  • Schlue, B. F., T. Mörz, and S. Kreiter. 2011. Undrained Shear Strength Properties of Organic Harbor Mud at Low Consolidation Stress Levels. Canadian Geotechnical Journal 48 (3): 388–398. doi:10.1139/T10-075.
  • Seybold, C. A., M. A. Elrashidi, and R. J. Engel. 2008. Linear Regression Models to Estimate Soil Liquid Limit and Plasticity Index from Basic Soil Properties. Soil Science 173 (1): 25–34. doi:10.1097/ss.0b013e318159a5e1.
  • Shahriar, A. R., M. Z. Abedin, and R. Jadid. 2018. Thixotropic Aging and Its Effect on 1-D Compression Behavior of Soft Reconstituted Clays. Applied Clay Science 153: 217–227. doi:10.1016/j.clay.2017.12.029.
  • Shang, J. Q., M. Tang, and Z. Miao. 1998. Vacuum Preloading Consolidation of Reclaimed Land: A Case Study. Canadian Geotechnical Journal 35 (5): 740–749. doi:10.1139/t98-039.
  • Sharma, B., and P. K. Bora. 2003. Plastic Limit, Liquid Limit and Undrained Shear Strength of Soil—Reappraisal. Journal of Geotechnical and Geoenvironmental Engineering 129 (8): 774–777. doi:10.1061/(ASCE)1090-0241(2003)129:8(774).
  • Shi, X. S., and I. Herle. 2015. Compression and Undrained Shear Strength of Remoulded Clay Mixtures. Géotechnique Letters 5 (2): 62–67. doi:10.1680/geolett.14.00089.
  • Shimobe, S., and G. Spagnoli. 2019. A Global Database considering Atterberg Limits with the Casagrande and Fall-Cone Tests. Engineering Geology 260: 105201. doi:10.1016/j.enggeo.2019.105201.
  • Siham, K., B. Fabrice, A. N. Edine, and D. Patrick. 2008. Marine Dredged Sediments as New Materials Resource for Road Construction. Waste Management (New York, N.Y.) 28 (5): 919–928. doi:10.1016/j.wasman.2007.03.027.
  • Skempton, A. W., and R. D. Northey. 1952. The Sensitivity of Clays. Géotechnique 3 (1): 30–53. doi:10.1680/geot.1952.3.1.30.
  • Smith, C. W., A. Hadas, J. Dan, and H. Koyumdjisky. 1985. Shrinkage and Atterberg Limits in Relation to Other Properties of Principal Soil Types in Israel. Geoderma 35 (1): 47–65. doi:10.1016/0016-7061(85)90055-2.
  • Sridharan, A., A. El-Shafei, and N. Miura. 2002. Mechanisms Controlling the Undrained Strength Behavior of Remolded Ariake Marine Clays. Marine Georesources & Geotechnology 20 (1): 21–50. doi:10.1080/106411902753556843.
  • Stanchi, S.,. M. Catoni, M. E. D'Amico, G. Falsone, and E. Bonifacio. 2017. Liquid and Plastic Limits of Clayey, Organic C-Rich Mountain Soils: Role of Organic Matter and Mineralogy. Catena 151: 238–246. doi:10.1016/j.catena.2016.12.021.
  • Tan, T. S. 1994. Shear strength of very soft clay-sand mixtures. Geotechnical Testing Journal 17 (1): 27–34.
  • Tan, T. S., T. C. Goh, G. P. Karunaratne, T. Inoue, and S. L. Lee. 1991. Yield Stress Measurement by a Penetration Method. Canadian Geotechnical Journal 28 (4): 517–522. doi:10.1139/t91-068.
  • Terzaghi, K., R. B. Peck, and G. Mesri. 1996. Soil Mechanics in Engineering Practice. New York: John Wiley & Sons.
  • Vardanega, P. J., and S. K. Haigh. 2017. Discussion of Water Content Ratio: An Effective Substitute for Liquidity Index for Prediction of Shear Strength of Clays by Beshy Kuriakose, Benny Mathews Abraham, A. Sridharan & Babu T. Jose. Geotechnical and Geological Engineering 35 (6): 3039–3044. doi:10.1007/s10706-017-0290-0.
  • Vardanega, P. J., C. L. Hickey, K. Lau, H. D. L. Sarzier, C. M. Couturier, and G. Martin. 2019. Investigation of the Atterberg Limits and Undrained Fall-Cone Shear Strength Variation with Water Content of Some Peat Soils. International Journal of Pavement Research and Technology 12 (2): 131–138. doi:10.1007/s42947-019-0017-0.
  • Verreydt, K., D. Van Gemert, J. Houtmeyers, and J. Van Waelderen. 2014. Redevelopment of Old Sludge Reservoirs. APCBEE Procedia 10: 177–181. doi:10.1016/j.apcbee.2014.10.013.
  • Wasti, Y., and M. H. Bezirci. 1986. Determination of the Consistency Limits of Soils by the Fall Cone Test. Canadian Geotechnical Journal 23 (2): 241–246. doi:10.1139/t86-033.
  • Wang, D., R. Zentar, N. E. Abriak, and W. Xu. 2012. Experimental Investigation on Consistency Limits of Cement and Lime-Stabilized Marine Sediments. Environmental Technology 33 (10-12): 1197–1205. doi:10.1080/09593330.2011.633565.
  • Wang, D., R. Zentar, N. E. Abriak, and W. Xu. 2013. Shear Strength Behavior of Cement/Lime-Solidified Dunkirk Sediments by Fall Cone Tests and Vane Shear Tests. Geotechnical Testing Journal 36 (1): 20120030–20120162. doi:10.1520/GTJ20120030.
  • Wang, D., N. E. Abriak, and R. Zentar. 2017. Dredged Marine Sediments Used as Novel Supply of Filling Materials for Road Construction. Marine Georesources & Geotechnology 35 (4): 472–480. doi:10.1080/1064119X.2016.1198945.
  • Whittig, L. D., and W. R. Allardice. 1986. X-Ray Diffraction Techniques. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5: 331–362.
  • Whyte, I. L. 1982. Soil Plasticity and Strength — A New Approach Using Extrusion. Ground Engineering 15 (1): 16–24.
  • Wood, D. M. 1981. Cone Penetrometer and Liquid Limit. Géotechnique 32 (32): 152–157.
  • Wood, D. M. 1985. Some Fall-Cone Tests. Géotechnique 35 (1): 64–68. doi:10.1680/geot.1985.35.1.64.
  • Wood, D. M. 1990. Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge university Press.
  • Wroth, C. P., and D. M. Wood. 1978. The Correlation of Index Properties with Some Basic Engineering Properties of Soils. Canadian Geotechnical Journal 15 (2): 137–145. doi:10.1139/t78-014.
  • Xu, G. Z., Y. F. Gao, Z. S. Hong, and J. W. Ding. 2012. Sedimentation Behavior of Four Dredged Slurries in China. Marine Georesources & Geotechnology 30 (2): 143–156. doi:10.1080/1064119X.2011.602382.
  • Zeng, L. L., Z. S. Hong, Y. Q. Cai, and J. Han. 2011. Change of Hydraulic Conductivity during Compression of Undisturbed and Remolded Clays. Applied Clay Science 51 (1-2): 86–93. doi:10.1016/j.clay.2010.11.005.
  • Zeng, L. L., Z. S. Hong, and Y. J. Cui. 2015. On the Volumetric Strain–Time Curve Patterns of Dredged Clays during Primary Consolidation. Géotechnique 65 (12): 1023–1028. doi:10.1680/jgeot.15.T.003.
  • Zeng, L. L., Z. S. Hong, C. Wang, and Z. Z. Yang. 2016. Experimental Study on Physical Properties of Clays with Organic Matter Soluble and Insoluble in Water. Applied Clay Science 132-133: 660–667. doi:10.1016/j.clay.2016.08.018.
  • Zeng, L. L., X. Bian, L. Zhao, Y. J. Wang, and Z. S. Hong. 2021. Effect of Phosphogypsum on Physiochemical and Mechanical Behaviour of Cement Stabilized Dredged Soil from Fuzhou. Geomechanics for Energy and the Environment 25: 100195. doi:10.1016/j.gete.2020.100195.
  • Zentar, R., N. Abriak, and V. Dubois. 2009a. Effects of Salts and Organic Matter on Atterberg Limits of Dredged Marine Sediments. Applied Clay Science 42 (3-4): 391–397. doi:10.1016/j.clay.2008.04.003.
  • Zentar, R., N. E. Abriak, and V. Dubois. 2009b. Fall Cone Test to Characterize Shear Strength of Organic Sediments. Journal of Geotechnical and Geoenvironmental Engineering 135 (1): 153–157. doi:10.1061/(ASCE)1090-0241(2009)135:1(153).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.