175
Views
1
CrossRef citations to date
0
Altmetric
Articles

Undrained anisotropic behaviour of K0-consolidated marine clay under cyclic stresses

&
Pages 14-23 | Received 01 Jul 2021, Accepted 01 Nov 2021, Published online: 26 Nov 2021

References

  • Al-Bared, M. A. M., A. Marto, N. Latifi, and S. Horpibulsuk. 2018. “Sustainable Improvement of Marine Clay Using Recycled Blended Tiles.” Geotechnical and Geological Engineering 36 (5): 3135–3147. doi:10.1007/s10706-018-0525-8.
  • Al-Bared, M. A. M., and A. Marto. 2017. “A Review on the Geotechnical and Engineering Characteristics of Marine Clay and the Modern Methods of Improvements.” Malaysian Journal of Fundamental and Applied Sciences 13 (4): 825–831. 10.11113/mjfas.v13n4.921. doi:10.11113/mjfas.v13n4.921.
  • Al-Bared, M. A. M., I. S. H. Harahap, A. Marto, H. Mohamad, S. V. Alavi Nezhad Khalil Abad, and Z. Mustaffa. 2020. “Cyclic Behavior of RT-Cement Treated Marine Clay Subjected to Low and High Loading Frequencies.” Geomechanics and Engineering 21 (5): 433–445. doi:10.12989/gae.2020.21.5.433.
  • Al-Bared, M. A. M., I. S. H. Harahap, A. Marto, S. V. Alavi Nezhad Khalil Abad, Z. Mustaffa, and M. O. A. Ali. 2019. “Mechanical Behaviour of Waste Powdered Tiles and Portland Cement Treated Soft Clay.” Geomechanics and Engineering 19 (1): 37–47. doi:10.12989/gae.2019.19.1.037.
  • Broms, B. B., and A. O. Casbarian. 1965. “Effect of Rotation of the Principle Stress Axes and of the Intermediate Principle Stress on the Shear Strength.” In Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering. Vol. 1, 179–183.
  • Cai, Y. Q., L. Guo, R. J. Jardine, Z. Yang, and J. Wang. 2017. “Stress-Strain Response of Soft Clay to Traffic Loading.” Géotechnique 67 (5): 446–451. doi:10.1680/jgeot.15.P.224.
  • Cai, Y., H. S. Yu, D. Wanatowski, and X. Li. 2013. “Noncoaxial Behaviour of Sand under Various Stress Paths.” Journal of Geotechnical and Geoenvironmental Engineering 139 (8): 1381–1395. doi:10.1061/(ASCE)GT.1943-5606.0000854.
  • Cai, Y., T. Wu, L. Guo, and J. Wang. 2018. “Stiffness Degradation and Plastic Strain Accumulation of Clay under Cyclic Load with Principal Stress Rotation and Deviatoric Stress Variation.” Journal of Geotechnical and Geoenvironmental Engineering 144 (5): 04018021. doi:10.1061/(ASCE)GT.1943-5606.0001854.
  • Gräbe, P. J., and C. R. Clayton. 2009. “Effects of Principal Stress Rotation on Permanent Deformation in Rail Track Foundations.” Journal of Geotechnical and Geoenvironmental Engineering 135 (4): 542–555. doi:10.1061/(ASCE)1090-0241(2009)135:4(555).
  • Gu, C., J. Wang, Y. Cai, Z. Yang, and Y. Gao. 2012. “Undrained Cyclic Triaxial Behaviour of Saturated Clays under Variable Confining Pressure.” Soil Dynamics and Earthquake Engineering 40: 118–128. doi:10.1016/j.soildyn.2012.03.011.
  • Gu, C., Z. Gu, Y. Cai, J. Wang, and Q. Dong. 2018. “Effects of Cyclic Intermediate Principal Stress on the Deformation of Saturated Clay.” Journal of Geotechnical and Geoenvironmental Engineering 144 (8): 04018052. doi:10.1061/(ASCE)GT.1943-5606.0001924.
  • Guo, L., H. Jin, J. Wang, and L. Shi. 2020. “Undrained Monotonic Shear Behavior of Marine Soft Clay after Long-Term Cyclic Loading.” Marine Georesources & Geotechnology 38 (7): 854–866. 10.1080/1064119X.2019.1636906. doi:10.1080/1064119X.2019.1636906.
  • Guo, L., J. Chen, J. Wang, Y. Cai, and P. Deng. 2016. “Influences of Stress Magnitude and Loading Frequency on Cyclic Behaviour of K0-Consolidated Marine Clay Involving Principal Stress Rotation.” Soil Dynamics and Earthquake Engineering 84: 94–107. doi:10.1016/j.soildyn.2016.01.024.
  • Guo, L., J. Wang, Y. Cai, H. Liu, Y. Gao, and H. Sun. 2013. “Undrained Deformation Behaviour of Saturated Soft Clay under Long-Term Cyclic Loading.” Soil Dynamics and Earthquake Engineering 50: 28–37. doi:10.1016/j.soildyn.2013.01.029.
  • Gutierrez, M., K. Ishihara, and I. Towhata. 1993. “Model for the Deformation of Sand during Rotation of Principal Stress Directions.” Soils and Foundations 33 (3): 105–117. doi:10.3208/sandf1972.33.3_105.
  • Hight, D. W., A. Gens, and M. J. Symes. 1983. “The Development of a New Hollow Cylinder Apparatus for Investigating the Effects of Principal Stress Rotation in Soils.” Géotechnique 33 (4): 355–383. doi:10.1680/geot.1983.33.4.355.
  • Huang, M., and Z. Yao. 2016. “Effect of the Principal Stress Direction on Cyclic Cumulative Deformation and Pore Pressure of Soft Clay.” Procedia Engineering 143: 811–819. doi:10.1016/j.proeng.2016.06.132.
  • Kirkgard, M. M., and P. V. Lade. 1993. “Anisotropic Three-Dimensional Behaviour of a Normally Consolidated Clay.” Canadian Geotechnical Journal 30 (5): 848–858. doi:10.1139/t93-075.
  • Kumruzzaman, M., and J. H. Yin. 2010. “Influences of Principle Stress Direction and Intermediate Principle Stress on the Stress–Strain–Strength Behaviour of Completely Decomposed Granite.” Canadian Geotechnical Journal 47 (2): 164–179. doi:10.1139/T09-079.
  • Lade, P. V., and M. M. Kirkgard. 2000. “Effects of Stress Rotation and Changes of B-Values on Cross-Anisotropic Behaviour of Natural, K0-Consolidated Soft Clay.” Soils and Foundations 40 (6): 93–105. doi:10.3208/sandf.40.6_93.
  • Li, L. L., H. B. Dan, and L. Z. Wang. 2011. “Undrained Behaviour of Natural Marine Clay under Cyclic Loading.” Ocean Engineering 38 (16): 1792–1805. doi:10.1016/j.oceaneng.2011.09.004.
  • Lunne, T., T. Berre, K. H. Andersen, S. Strandvik, and M. Sjursen. 2006. “Effects of Sample Disturbance and Consolidation Procedures on Measured Shear Strength of Soft Marine Norwegian Clays.” Canadian Geotechnical Journal 43 (7): 726–750. doi:10.1139/t06-040.
  • Moses, G. G., S. N. Rao, and P. N. Rao. 2003. “Undrained Strength Behaviour of a Cemented Marine Clay under Monotonic and Cyclic Loading.” Ocean Engineering 30 (14): 1765–1789. doi:10.1016/S0029-8018(03)00018-0.
  • Qian, J. G., Y. G. Wang, Z. Y. Yin, and M. S. Huang. 2016. “Experimental Identification of Plastic Shakedown Behaviour of Saturated Clay Subjected to Traffic Loading with Principal Stress Rotation.” Engineering Geology 214: 29–42. doi:10.1016/j.enggeo.2016.09.012.
  • Sakai, A., L. Samang, and N. Miura. 2003. “Partially-Drained Cyclic Behaviour and Its Application to the Settlement of a Low Embankment Road on Silty-Clay.” Soils and Foundations 43 (1): 33–46. doi:10.3208/sandf.43.33.
  • Symes, M. J. P. R., A. Gens, and D. W. Hight. 1984. “Undrained Anisotropy and Principle Stress Rotation in Saturated Sand.” Géotechnique 34 (1): 11–27. doi:10.1680/geot.1984.34.1.11.
  • Symes, M. J., A. Gens, and D. W. Hight. 1988. “Drained Principle Stress Rotation in Saturated Sand.” Géotechnique 38 (1): 59–81. doi:10.1680/geot.1988.38.1.59.
  • Wang, J., D. Feng, L. Guo, H. T. Fu, Y. O. Cai, T. Y. Wu, and L. Shi. 2019b. “Anisotropic and Noncoaxial Behaviour of K0-Consolidated Soft Clays under Stress Paths with Principal Stress Rotation.” Journal of Geotechnical and Geoenvironmental Engineering 145 (9): 04019036. doi:10.1061/(ASCE)GT.1943-5606.0002103.
  • Wang, J., Z. Zhou, X. Q. Hu, L. Guo, and Y. O. Cai. 2019a. “Effects of Principal Stress Rotation and Cyclic Confining Pressure on Behaviour of Soft Clay with Different Frequencies.” Soil Dynamics and Earthquake Engineering 118: 75–85. doi:10.1016/j.soildyn.2018.12.013.
  • Wang, L. Z., and Z. Y. Yin. 2012. “Stress-Dilatancy of Natural Soft Clay under an Undrained Creep Condition.” International Journal of Geomechanics 15: A4014002. doi:10.1061/(ASCE)GM.1943-5622.0000271.
  • Wang, Y. K., L. Guo, Y. F. Gao, Y. Qiu, X. Q. Hu, and Y. Zhang. 2016. “Anisotropic Drained Deformation Behaviour and Shear Strength of Natural Soft Marine Clay.” Marine Georesources & Geotechnology 34 (5): 493–502. doi:10.1080/1064119X.2015.1081653.
  • Wang, Y. K., Y. F. Gao, L. Guo, and Z. X. Yang. 2018. “Influence of Intermediate Principal Stress and Principal Stress Direction on Drained Behaviour of Natural Soft Clay.” International Journal of Geomechanics 18 (1): 04017128. doi:10.1061/(ASCE)GM.1943-5622.0001042.
  • Wu, Tingyu, Hongxu Jin, Lin Guo, Honglei Sun, Junhao Tong, Yaochen Jiang, and Pengfei Wei. 2022. “Predicting Method on Settlement of Soft Subgrade Soil Caused by Traffic Loading Involving Principal Stress Rotation and Loading Frequency.” Soil Dynamics and Earthquake Engineering 152: 107023. https://doi.org/10.1016/j.soildyn.2021.107023. doi:10.1016/j.soildyn.2021.107023.
  • Xiao, J., C. Juang, K. Wei, and S. Xu. 2014. “Effects of Principal Stress Rotation on the Cumulative Deformation of Normally Consolidated Soft Clay under Subway Traffic Loading.” Journal of Geotechnical and Geoenvironmental Engineering 140 (4): 04013046. doi:10.1061/(ASCE)GT.1943-5606.0001069.
  • Yang, Z. X., X. S. Li, and J. Yang. 2007. “Undrained Anisotropy and Rotational Shear in Granular Soil.” Géotechnique 57 (4): 371–384. doi:10.1680/geot.2007.57.4.371.
  • Zainuddin, N., N. Z. Mohd Yunus, M. A. M. Al-Bared, A. Marto, I. S. H. Harahap, and A. S. A. Rashid. 2019. “Measuring the Engineering Properties of Marine Clay Treated with Disposed Granite Waste.” Measurement 131: 50–60. doi:10.1016/j.measurement.2018.08.053.
  • Zdravković, L., and R. J. Jardine. 2001. “The Effect on Anisotropy of Rotating the Principal Stress Axes during Consolidation.” Géotechnique 51 (1): 69–83. doi:10.1680/geot.2001.51.1.69.
  • Zhou, J., and X. Gong. 2001. “Strain Degradation of Saturated Clay under Cyclic Loading.” Canadian Geotechnical Journal 38 (1): 208–212. doi:10.1139/t00-062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.