492
Views
2
CrossRef citations to date
0
Altmetric
Articles

Simulation of runout behavior of submarine debris flows over regional natural terrain considering material softening

, , , , &
Pages 175-194 | Received 14 Sep 2021, Accepted 28 Nov 2021, Published online: 28 Dec 2021

References

  • Baum, R. L., W. Z. Savage, and J. W. Godt. 2008. TRIGRS — a Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey Open-File Report, 75. Report 2008–1159. .
  • Brezzi, L., S. Cola, F. Gabrieli, and G. Gidoni. 2017. Spreading of Kaolin and Sand Mixtures on a Horizontal Plane: physical Experiments and SPH Numerical Modelling. Procedia Engineering 175: 197–203. doi:10.1016/j.proeng.2017.01.008.
  • Chen, H. X., and L. M. Zhang. 2015. EDDA 1.0: Integrated Simulation of Debris Flow Erosion, Deposition and Property Changes. Geoscientific Model Development 8 (3): 829–844. doi:10.5194/gmd-8-829-2015.
  • Chen, X. Y., L. L. Zhang, L. M. Zhang, H. Q. Yang, Z. Q. Liu, S. Lacasse, J. H. Li, and Z. J. Cao. 2020. Investigation of Impact of Submarine Landslide on Pipelines with Large Deformation Analysis considering Spatially Varied Soil. Ocean Engineering 216: 107684. doi:10.1016/j.oceaneng.2020.107684.
  • Chen, Y., L. Zhang, C. Liao, M. Jiang, and M. Peng. 2020. A Two-Stage Probabilistic Approach for the Risk Assessment of Submarine Landslides Induced by Gas Hydrate Exploitation. Applied Ocean Research 99: 102158. doi:10.1016/j.apor.2020.102158.
  • De Blasio, F. V., A. Elverhøi, D. Issler, C. B. Harbitz, P. Bryn, and R. Lien. 2005. On the Dynamics of Subaqueous Clay Rich Gravity Mass Flows - the Giant Storegga Slide, Norway. Marine and Petroleum Geology 22 (1–2): 179–186. doi:10.1016/j.marpetgeo.2004.10.014.
  • De Blasio, F. V., A. Elverhøi, D. Issler, C. B. Harbitz, P. Bryn, and R. Lien. 2004a. Flow Models of Natural Debris Flows Originating from Overconsolidated Clay Materials. Marine Geology 213 (1–4): 439–455. doi:10.1016/j.margeo.2004.10.018.
  • De Blasio, F. V., L. Engvik, C. B. Harbitz, and A. Elverhøi. 2004b. Hydroplaning and Submarine Debris Flows. Journal of Geophysical Research 109 (C1): 1–16. doi:10.1029/2002JC001714.
  • De Lange, S. I., N. Santa, S. P. Pudasaini, M. G. Kleinhans, and T. de Haas. 2020. Debris-Flow Generated Tsunamis and Their Dependence on Debris-Flow Dynamics. Coastal Engineering 157: 103623. doi:10.1016/j.coastaleng.2019.103623.
  • Dey, R., B. C. Hawlader, R. Phillips, and K. Soga. 2016. Numerical Modeling of Submarine Landslides with Sensitive Clay Layers. Géotechnique 66 (6): 454–468. doi:10.1680/jgeot.15.P.111.
  • Dong, Y., D. Wang, and L. Cui. 2020. Assessment of Depth-Averaged Method in Analysing Runout of Submarine Landslide. Landslides 17 (3): 543–555. doi:10.1007/s10346-019-01297-2.
  • Dong, Y., D. Wang, and M. F. Randolph. 2017a. Runout of Submarine Landslide Simulated with Material Point Method. Journal of Hydrodynamics 29 (3): 438–444. doi:10.1016/S1001-6058(16)60754-0.
  • Dong, Y., D. Wang, and M. F. Randolph. 2017b. Investigation of Impact Forces on Pipeline by Submarine Landslide Using Material Point Method. Ocean Engineering 146: 21–28. doi:10.1016/j.oceaneng.2017.09.008.
  • Fan, N., T. K. Nian, H. B. Jiao, and Y. G. Jia. 2018. Interaction between Submarine Landslides and Suspended Pipelines with a Streamlined Contour. Marine Georesources & Geotechnology 36 (6): 652–662. doi:10.1080/1064119X.2017.1362084.
  • Grilli, S. T., and P. Watts. 2005. Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation and Sensitivity Analyses. Journal of Waterway, Port, Coastal, and Ocean Engineering 131 (6): 283–297. doi:10.1061/(ASCE)0733-950X(2005)131:6(283).
  • Guo, X., T. Nian, Z. Wang, W. Zhao, N. Fan, and H. Jiao. 2020a. Low-Temperature Rheological Behavior of Submarine Mudflows. Journal of Waterway, Port, Coastal, and Ocean Engineering 146 (2): 04019043. . (asce)ww.1943-5460.0000551 doi:10.1061/(ASCE)WW.1943-5460.0000551.
  • Guo, X., D. Zheng, T. Nian, and L. Lv. 2020b. Large-Scale Seafloor Stability Evaluation of the Northern Continental Slope of South China Sea. Marine Georesources & Geotechnology 38 (7): 804–817. doi:10.1080/1064119X.2019.1632996.
  • Harbitz, C. B., G. Parker, A. Elverhøi, J. G. Marr, D. Mohrig, and P. A. Harff. 2003. Hydroplaning of Subaqueous Debris Flows and Glide Blocks: Analytical Solutions and Discussion. Journal of Geophysical Research: Solid Earth 108 (B7): 1–18. doi:10.1029/2001JB001454.
  • Huang, X., and M. H. García. 1998. A Herschel-Bulkley Model for Mud Flow Down a Slope. Journal of Fluid Mechanics 374: 305–333. doi:10.1017/S0022112098002845.
  • Huang, X., and M. H. García. 1997. A Perturbation Solution for Bingham-Plastic Mudflows. Journal of Hydraulic Engineering 123 (11): 986–994. doi:10.1061/(ASCE)0733-9429(1997)123:11(986).
  • Imran, J., P. Harff, and G. Parker. 2001. A Numerical Model of Submarine Debris Flow with Graphical User Interface. Computers & Geosciences 27 (6): 717–729. doi:10.1016/S0098-3004(00)00124-2.
  • Issler, D., F. V. De Blasio, A. Elverhøi, P. Bryn, and R. Lien. 2005. Scaling Behaviour of Clay-Rich Submarine Debris Flows. Marine and Petroleum Geology 22 (1–2): 187–194. doi:10.1016/j.marpetgeo.2004.10.015.
  • Iverson, R. M., and D. L. George. 2014. A Depth-Averaged Debris-Flow Model That Includes the Effects of Evolving Dilatancy. I. Physical Basis. Proceedings of the Royal Society A 471: 31. doi:10.1098/rspa.2013.0819.
  • Jeong, S. W., J. Locat, S. Leroueil, and J. L. Robert. 2013. Fluidization Process in Submarine Landslides: Physical and Numerical Considerations. Marine Georesources & Geotechnology 31 (2): 190–207. doi:10.1080/1064119X.2012.676155.
  • Jiang, M., Z. Shen, and D. Wu. 2018. CFD-DEM Simulation of Submarine Landslide Triggered by Seismic Loading in Methane Hydrate Rich Zone. Landslides 15 (11): 2227–2241. doi:10.1007/s10346-018-1035-8.
  • Jiang, M., C. Sun, G. B. Crosta, and W. Zhang. 2015. A Study of Submarine Steep Slope Failures Triggered by Thermal Dissociation of Methane Hydrates Using a Coupled CFD-DEM Approach. Engineering Geology 190: 1–16. doi:10.1016/j.enggeo.2015.02.007.
  • Kafle, J., P. Kattel, M. Mergili, J. T. Fischer, and S. P. Pudasaini. 2019. Dynamic Response of Submarine Obstacles to Two-Phase Landslide and Tsunami Impact on Reservoirs. Acta Mechanica 230 (9): 3143–3169. doi:10.1007/s00707-019-02457-0.
  • Kim, J., F. Løvholt, D. Issler, and C. F. Forsberg. 2019. Landslide Material Control on Tsunami Genesis—the Storegga Slide and Tsunami (8,100 Years BP. Journal of Geophysical Research: Oceans 124 (6): 3607–3627. doi:10.1029/2018JC014893.
  • Kormi, T., A. Hentati, M. Selmi, and N. BelHadj Ali. 2020. Reliability-Based Assessment of Foundations under HM Combined Loading Using Random Finite Element Method. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 14 (4): 293–307. doi:10.1080/17499518.2019.1690151.
  • Leslie, S. C., and P. Mann. 2016. Giant Submarine Landslides on the Colombian Margin and Tsunami Risk in the Caribbean Sea. Earth and Planetary Science Letters 449: 382–394. doi:10.1016/j.epsl.2016.05.040.
  • Leynaud, D., N. Sultan, and J. Mienert. 2007. The Role of Sedimentation Rate and Permeability in the Slope Stability of the Formerly Glaciated Norwegian Continental Margin: The Storegga Slide Model. Landslides 4 (4): 297–309. doi:10.1007/s10346-007-0086-z.
  • Li, G., G. J. Moridis, K. Zhang, and X. Li. 2010. Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in Shenhu Area of South China Sea. Energy & Fuels 24 (11): 6018–6033. doi:10.1021/ef100930m.
  • Li, R. Y., J. J. Chen, and C. C. Liao. 2021. Numerical Study on Interaction between Submarine Landslides and a Monopile Using Cfd Techniques. Journal of Marine Science and Engineering 9 (7): 736. doi:10.3390/jmse9070736.
  • Liu, F., L. Tan, G. Crosta, and Y. Huang. 2020. Spatiotemporal Destabilization Modes of Upper Continental Slopes Undergoing Hydrate Dissociation. Engineering Geology 264: 105286. doi:10.1016/j.enggeo.2019.105286.
  • Løvholt, F., S. Bondevik, J. S. Laberg, J. Kim, and N. Boylan. 2017. Some Giant Submarine Landslides Do Not Produce Large Tsunamis. Geophysical Research Letters 44 (16): 8463–8472. doi:10.1002/2017GL074062.
  • Luna, B. Q., A. Remaître, T. W. J. van Asch, J. P. Malet, and C. J. van Westen. 2012. Analysis of Debris Flow Behavior with a One Dimensional Run-out Model Incorporating Entrainment. Engineering Geology 128: 63–75. doi:10.1016/j.enggeo.2011.04.007.
  • Malet, J. P., O. Maquaire, J. Locat, and A. Rema Tre. 2004. Assessing Debris Flow Hazards Associated with Slow Moving Landslides: methodology and Numerical Analyses. Landslides 1 (1): 83–90. doi:10.1007/s10346-003-0005-x.
  • Marr, J. G., A. Elverhø, C. Harbitz, J. Imran, and P. Harff. 2002. Numerical Simulation of Mud-Rich Subaqueous Debris Flows on the Glacially Active Margins of the Svalbard-Barents Sea. Marine Geology 188 (3–4): 351–364. doi:10.1016/S0025-3227(02)00310-9.
  • Mergili, M., J. T. Fischer, J. Krenn, and S. P. Pudasaini. 2017. R.avaflow v1, an Advanced Open-Source Computational Framework for the Propagation and Interaction of Two-Phase Mass Flows. Geoscientific Model Development 10 (2): 553–569. doi:10.5194/gmd-10-553-2017.
  • Nian, T. K., X. S. Guo, D. F. Zheng, Z. X. Xiu, and Z. B. Jiang. 2019. Susceptibility Assessment of Regional Submarine Landslides Triggered by Seismic Actions. Applied Ocean Research. 93: 101964. doi:10.1016/j.apor.2019.101964.
  • Pudasaini, S. P. 2012. A General Two-Phase Debris Flow Model. Journal of Geophysical Research: Earth Surface 117 (F3): n/a–3. doi:10.1029/2011JF002186.
  • Pudasaini, S. P., and M. Mergili. 2019. A Multi-Phase Mass Flow Model. Journal of Geophysical Research: Earth Surface 124 (12): 2920–2942. doi:10.1029/2019JF005204.
  • Qian, X., and H. S. Das. 2019. Modeling Subaqueous and Subaerial Muddy Debris Flows. Journal of Hydraulic Engineering 145 (1): 04018083. doi:10.1061/(ASCE)HY.1943-7900.0001526.
  • Qian, X., J. Xu, H. S. Das, D. Wang, and Y. Bai. 2020. Improved Modeling of Subaerial and Subaqueous Muddy Debris Flows. Journal of Hydraulic Engineering 146 (7): 06020007–06020010. doi:10.1061/(ASCE)HY.1943-7900.0001771.
  • Rui, Y., and M. Yin. 2019. An Analytical Solution for the Run-Out of Submarine Debris Flows. Marine Geodesy 42: 246–262. doi:10.1080/01490419.2019.1583146.
  • Samtani, N. C., and J. M. Kulicki. 2020. Uncertainty in Differential Settlements of Bridge Foundations and Retaining Walls. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 14 (3): 231–243. doi:10.1080/17499518.2020.1711526.
  • Schnellmann, M., F. S. Anselmetti, D. Giardini, J. A. McKenzie, and S. N. Ward. 2002. Prehistoric Earthquake History Revealed by Lacustrine Slump Deposits. Geology 30 (12): 1131–1134. doi:10.1130/0091-7613(2002)030 < 1131:PEHRBL>2.0.CO;2.
  • Shen, P., L. Zhang, H. Chen, and R. Fan. 2018. EDDA 2.0: Integrated Simulation of Debris Flow Initiation and Dynamics considering Two Initiation Mechanisms. Geoscientific Model Development 11 (7): 2841–2856. doi:10.5194/gmd-11-2841-2018.
  • Stoecklin, A., P. Trapper, and A. M. Puzrin. 2021. Controlling Factors for Post-Failure Evolution of Subaqueous Landslides. Géotechnique 1 Géotechnique 71 (10): 879–892. doi:10.1680/jgeot.19.P.230.
  • Strasser, M., S. Stegmann, F. Bussmann, F. S. Anselmetti, B. Rick, and A. Kopf. 2007. Quantifying Subaqueous Slope Stability during Seismic Shaking: Lake Lucerne as Model for Ocean Margins. Marine Geology 240 (1–4): 77–97. doi:10.1016/j.margeo.2007.02.016.
  • Sultan, N., P. Cochonat, J. P. Foucher, and J. Mienert. 2004. Effect of Gas Hydrates Melting on Seafloor Slope Instability. Marine Geology 213 (1–4): 379–401. doi:10.1016/j.margeo.2004.10.015.
  • Wang, X., T. S. Collett, M. W. Lee, S. Yang, Y. Guo, and S. Wu. 2014. Geological Controls on the Occurrence of Gas Hydrate from Core, Downhole Log, and Seismic Data in the Shenhu Area, South China Sea. Marine Geology 357: 272–292. doi:10.1016/j.margeo.2014.09.040.
  • Wang, Y., C. Fu, and X. Qin. 2020. Numerical and Physical Modeling of Submarine Telecommunication Cables Subjected to Abrupt Lateral Seabed Movements. Marine Georesources and Geotechnology 39: 1307–1319. doi:10.1080/1064119X.2020.1833265.
  • Wang, Z., X. Li, P. Liu, and Y. Tao. 2016. Numerical Analysis of Submarine Landslides Using a Smoothed Particle Hydrodynamics Depth Integral Model. Acta Oceanologica Sinica 35 (5): 134–140. doi:10.1007/s13131-016-0864-3.
  • Watts, P. 2000. Tsunami Features of Solid Block Underwater Landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering 126 (3): 144–152. doi:10.1061/(ASCE)0733-950X(2000)126:3(144).
  • Wright, V. G., and R. B. Krone. 1987. Laboratory and Numerical Study of Mud and Debris Flows. 22nd International Association for Hydraulic Research Congress. Lausanne, Switzerland.
  • Wu, N., H. Zhang, S. Yang, G. Zhang, J. Liang, J. Lu, X. Su, P. Schultheiss, M. Holland, and Y. Zhu. 2011. Gas Hydrate System of Shenhu Area, Northern South China Sea: Geochemical Results. Journal of Geological Research 2011: 1–10. doi:10.1155/2011/370298.
  • Wu, S., D. Dong, S. Yang, G. Zhang, Z. Wang, Q. Li, J. Liang, Y. Gong, and Y. Sun. 2009. Genetic Model of the Hydrate System in the Fine Grain Sediments in the Northern Continental Slope of South China Sea. Chinese Journal of Geophysics 52: 1849–1857. doi:10.3969/j.issn.0001-5733.2009.07.019.
  • Xu, H. N., S. X. Yang, X. D. Zheng, M. J. Wang, and J. S. Wang. 2010. Seismic Identification of Gas Hydrate and Its Distribution in Shenhu Area, South China Sea. Chinese Journal of Geophysics 53 (4): 574–582. doi:10.1002/cjg2.1527.
  • Xu, J., L. Zhang, J. Li, Z. Cao, H. Yang, and X. Chen. 2020a. Probabilistic Estimation of Variogram Parameters of Geotechnical Properties with a Trend Based on Bayesian Inference Using Markov Chain Monte Carlo Simulation. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards 15: 83–97. doi:10.1080/17499518.2020.1757720.
  • Xu, J., L. Zhang, Y. Wang, C. Wang, J. Zheng, and Y. Yu. 2020b. Probabilistic Estimation of Cross-Variogram Based on Bayesian Inference. Engineering Geology 277: 105813. doi:10.1016/j.enggeo.2020.105813.
  • Yeh, C. H., J. J. Dong, S. Khoshnevisan, C. H. Juang, W. C. Huang, and Y. C. Lu. 2021. The Role of the Geological Uncertainty in a Geotechnical Design – a Retrospective View of Freeway No. 3 Landslide in Northern Taiwan. Engineering Geology 291: 106233. doi:10.1016/j.enggeo.2021.106233.
  • Yin, M., and Y. Rui. 2018. Laboratory Study on Submarine Debris Flow. Marine Georesources & Geotechnology 36 (8): 950–958. doi:10.1080/1064119X.2017.1402975.
  • Zakeri, A. 2009. Submarine Debris Flow Impact on Suspended (Free-Span) Pipelines: normal and Longitudinal Drag Forces. Ocean Engineering 36 (6–7): 489–499. doi:10.1016/j.oceaneng.2009.01.018.
  • Zakeri, A., K. Høeg, and F. Nadim. 2009. Submarine Debris Flow Impact on pipelines - Part II: Numerical Analysis. Coastal Engineering 56 (1): 1–10. doi:10.1016/j.coastaleng.2008.06.005.
  • Zakeri, A., K. Høeg, and F. Nadim. 2008. Submarine Debris Flow Impact on Pipelines - Part I: experimental Investigation. Coastal Engineering 55 (12): 1209–1218. doi:10.1016/j.coastaleng.2008.06.003.
  • Zhang, M., H. Lu, H. Guan, L. Liu, D. Wu, and N. Wu. 2018. Methane Seepage Intensities Traced by Sulfur Isotopes of Pyrite and Gypsum in Sediment from the Shenhu Area, South China Sea. Acta Oceanologica Sinica 37 (7): 20–27. doi:10.1007/s13131-018-1241-1.
  • Zhang, W., J. Liang, J. Wei, J. Lu, P. Su, L. Lin, W. Huang, et al. 2020. Geological and Geophysical Features of and Controls on Occurrence and Accumulation of Gas Hydrates in the First Offshore Gas-Hydrate Production Test Region in the Shenhu Area, Northern South China Sea. Marine and Petroleum Geology 114: 104191. doi:10.1016/j.marpetgeo.2019.104191.
  • Zhang, W., and A. M. Puzrin. 2021. Depth Integrated Modelling of Submarine Landslide Evolution. Landslides 18 (9): 3063–3084. doi:10.1007/s10346-021-01655-z.
  • Zhang, W., and M. F. Randolph. 2020. A Smoothed Particle Hydrodynamics Modelling of Soil–Water Mixing and Resulting Changes in Average Strength. International Journal for Numerical and Analytical Methods in Geomechanics 44 (11): 1548–1569. doi:10.1002/nag.3077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.