267
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Optimization of impeller of deep-sea mining pump for erosive wear reduction based on response surface methodology

&
Pages 295-311 | Received 03 Dec 2021, Accepted 13 Jan 2022, Published online: 03 Feb 2022

References

  • ASTM-G40. 2015. Standard Terminology Relating to Wear and Erosion. G 40, Annual Book of ASTM standards, ASTM.
  • Chaudhary, A., S. Sharma, and A. Verma. 2021. Optimization of WEDM Process Parameters for Machining of Heat Treated ASSAB’88 Tool Steel Using Response Surface Methodology (RSM). Materials Today: Proceedings. doi:10.1016/j.matpr.2021.06.314.
  • Ciarrocchi, E., A. Arteconi, X. Zheng, F. Polonara, and R. Wang. 2017. Assessment of the Energy Performance of an Air Source Heat Pump by Response Surface Methodology. Energy Procedia 105: 439–444. doi:10.1016/j.egypro.2017.03.338.
  • Clark, H. M. 2002. Particle Velocity and Size Effects in Laboratory Slurry Erosion Measurements or…Do You Know What Your Particles Are Doing? Tribology International 35 (10): 617–624. doi:10.1016/S0301-679X(02)00052-X.
  • Derakhshan, S., and M. Bashiri. 2018. Investigation of an Efficient Shape Optimization Procedure for Centrifugal Pump Impeller Using Eagle Strategy Algorithm and ANN (Case Study: slurry Flow). Structural and Multidisciplinary Optimization 58 (2): 459–473. doi:10.1007/s00158-018-1897-3.
  • Dong, X., H. L. Zhang, and X. Y. Wang. 2009. Finite Element Analysis of Wear for Centrifugal Slurry Pump. Procedia Earth and Planetary Science 1: 1532–1538.
  • Engin, T., and A. Kurt. 2003. Prediction of Centrifugal Slurry Pump Head Reduction: An Artificial Neural Networks Approach. Journal of Fluids Engineering 125 (1): 199–202. doi:10.1115/1.1523062.
  • Gao, X. P., Y. Tian, and B. W. Sun. 2018. Multi-Objective Optimization Design of Bidirectional Flow Passage Components Using RSM and NSGA II: A Case Study of Inlet/Outlet Diffusion Segment in Pumped Storage Power Station. Renewable Energy 115: 999–1013. doi:10.1016/j.renene.2017.09.011.
  • Gjernes, T. A. P. 2014. Optimization of Centrifugal Slurry Pumps through Computational Fluid Dynamics. Thesis of Master of Applied Science., Simon Fraser University.
  • Guan, F. X. 2011. Modern Pump Theory and Design. Beijing, China: China Aerospace Press.
  • Huo, J. H., B. S. Yu, Z. G. Peng, Z. S. Wu, and L. H. Zhang. 2021. Preparation, Characterization and Optimization of Micro-Encapsulated Phase Change Materials Used for Thermal Storage and Temperature Regulation Depends on Response Surface Methodology. Journal of Energy Storage 40: 102789. doi:10.1016/j.est.2021.102789.
  • Jeon, S. Y., C. K. Kim, S. M. Lee, J. Y. Yoon, and C. M. Jang. 2017. Performance Enhancement of a Pump Impeller Using Optimal Design Method. Journal of Thermal Science 26 (2): 119–124. doi:10.1007/s11630-017-0919-6.
  • Kang, Y. J., S. J. Liu, W. S. Zou, H. Zhao, and X. Z. Hu. 2019. Design and Analysis of an Innovative Deep-Sea Lifting Motor Pump. Applied Ocean Research 82: 22–31. doi:10.1016/j.apor.2018.10.018.
  • Kawata, Y., H. Azuma, and M. Takagi. 2017. Applying Response Surface Methodology to Design CO2 Storage System with Water Production considering Efficient Pump Energy Use. Energy Procedia 114: 4075–4085. doi:10.1016/j.egypro.2017.03.1548.
  • Khalid, Y. A., and S. M. Sapuan. 2007. Wear Analysis of Centrifugal Slurry Pump Impellers. Industrial Lubrication and Tribology 59 (1): 18–28. doi:10.1108/00368790710723106.
  • Kim, S., K. Y. Lee, J. H. Kim, J. H. Kim, U. K. Jung, and Y. S. Choi. 2015. High Performance Hydraulic Design Techniques of Mixed-Flow Pump Impeller and Diffuser. Journal of Mechanical Science and Technology 29 (1): 227–240. doi:10.1007/s12206-014-1229-5.
  • Li, Y., Z. C. Zhu, W. Q. He, and Z. H. He. 2012. Numerical Simulation and Experimental Research on the Influence of Solid-Phase Characteristics on Centrifugal Pump Performance. Chinese Journal of Mechanical Engineering 25 (6): 1184–1189. doi:10.3901/CJME.2012.06.1184.
  • Lopez, A., M. Stickland, and W. Dempster. 2015. Modeling Erosion in a Centrifugal Pump in an Eulerian-Lagrangian Frame Using OpenFOAM®. Open Engineering 5 (1): 105–124. doi:10.1515/eng-2015-0037.
  • Lu, J. L., L. Guo, L. K. Wang, W. Wang, P. C. Guo, and X. Q. Luo. 2019. Unsteady Flow Characteristics of Tip Clearance in Semi-Open Impeller Centrifugal Pump. Transactions of the Chinese Society for Agricultural Machinery 50 (6): 163–172.
  • Mehmet, C., and T. Engin. 2016. 3-D Numerical Investigation and Optimization of Centrifugal Slurry Pump Using Computational Fluid Dynamics. Isi Bilimi Ve Teknigi Dergisi 36 (1): 69–83.
  • Peng, G. J., F. Y. Fan, L. Zhou, X. Huang, and J. F. Ma. 2021. Optimal Hydraulic Design to Minimize Erosive Wear in a Centrifugal Slurry Pump Impeller. Engineering Failure Analysis 120: 105105. doi:10.1016/j.engfailanal.2020.105105.
  • Pinheiro, J. M., S. Salústio, A. A. Valente, and C. M. Silva. 2018. Adsorption Heat Pump Optimization by Experimental Design and Response Surface Methodology. Applied Thermal Engineering 138: 849–860. doi:10.1016/j.applthermaleng.2018.03.091.
  • Plackett, R. L., and J. P. Burman. 1946. The Design of Optimum Multifactorial Experiments. Biometrika 33 (4): 305–325. doi:10.1093/biomet/33.4.305.
  • Sellgren, A., G. Addie, and S. Scott. 2000. The Effect of Sand-Clay Slurries on the Performance of Centrifugal Pumps. The Canadian Journal of Chemical Engineering 78 (4): 764–769. doi:10.1002/cjce.5450780420.
  • Shen, Z., W. Chu, X. Li, and W. Dong. 2019. Sediment Erosion in the Impeller of a Double-Suction Centrifugal Pump-A Case Study of the Jingtai Yellow River Irrigation Project. Wear 422–423: 269–279 doi:10.1016/j.wear.2019.01.088.
  • Singh, D. K., and J. V. Tirkey. 2022. Performance Optimization through Response Surface Methodology of an Integrated Coal Gasification and CI Engine Fuelled with Diesel and Low-Grade Coal-Based Producer Gas. Energy 238: 121982. doi:10.1016/j.energy.2021.121982.
  • Tan, L., and S. L. Cao. 2010. Optimal Design and Numerical Simulation for Impeller of Centrifugal Pump with Medium-High Specific Speed. Journal of Drainage and Irrigation Machinery Engineering 28 (4): 282–290.
  • Tarodiya, R., and B. K. Gandhi. 2017. Hydraulic Performance and Erosive Wear of Centrifugal Slurry Pumps - a Review. Powder Technology 305: 27–38. doi:10.1016/j.powtec.2016.09.048.
  • Tarodiya, R., and B. K. Gandhi. 2019. Numerical Simulation of a Centrifugal Slurry Pump Handling Solid-Liquid Mixture: Effect of Solids on Flow Field and Performance. Advanced Powder Technology 30 (10): 2225–2239. doi:10.1016/j.apt.2019.07.003.
  • Wang, C., Y. Feng, J. Ye, B. Luo, and K. Liu. 2017. Multi-Objective Parameters Optimization of Centrifugal Slurry Pump Based on RBF Neural Network and NSGA-II Genetic Algorithm. Transactions of the Chinese Society of Agricultural Engineering 33 (10): 109–115.
  • Wang, C., W. Shi, X. Wang, X. Jiang, W. Li, Y. Yang, and L. Zhou. 2017. Optimal Design of Multistage Centrifugal Pump Based on the Combined Energy Loss Model and Computational Fluid Dynamics. Applied Energy 187: 10–26. doi:10.1016/j.apenergy.2016.11.046.
  • Wu, Y. L. 2011. Vane Pump Design and Example. Beijing, China: Machinery Industry Press.
  • Xu, H. L., Y. X. Zhou, F. Q. Yang, and B. Wu. 2019. Analysis on Influences of Feeding Flow Rate on Flow Characteristics in Deep-Sea Ore Hydraulic Transport Equipment. Journal of Drainage and Irrigation Machinery Engineering 37 (7): 618–624.
  • Yaman, G., M. K. Yesilyurt, and S. Uslu. 2022. Simultaneous Optimization of Multiple Engine Parameters of a 1-Heptanol/Gasoline Fuel Blends Operated a Port-Fuel Injection Spark-Ignition Engine Using Response Surface Methodology Approach. Energy 238: 122019. doi:10.1016/j.energy.2021.122019.
  • Yang, P., H. Chen, and Y. W. Liu. 2017. Application of Response Surface Methodology and Desirability Approach to Investigate and Optimize the Jet Pump in a Thermoacoustic Stirling Heat Engine. Applied Thermal Engineering 127: 1005–1014. doi:10.1016/j.applthermaleng.2017.08.077.
  • Yang, P., Y. W. Liu, and G. Y. Zhong. 2016. Prediction and Parametric Analysis of Acoustic Streaming in a Thermoacoustic Stirling Heat Engine with a Jet Pump Using Response Surface Methodology. Applied Thermal Engineering 103: 1004–1013. doi:10.1016/j.applthermaleng.2016.04.157.
  • Yang, Y., L. Zhou, J. Hang, D. Du, W. Shi, and Z. He. 2021. Energy Characteristics and Optimal Design of Diffuser Meridian in an Electrical Submersible Pump. Renewable Energy 167: 718–727. doi:10.1016/j.renene.2020.11.143.
  • Yuan, S. Q., W. D. Shi, and H. L. Liu. 2014. Pump Theory and Technology. Beijing, China: Mechanical Industry Press.
  • Zhao, R. J., Y. L. Zhao, D. S. Zhang, Y. Li, and L. L. Geng. 2021. Numerical Investigation of the Characteristics of Erosion in a Centrifugal Pump for Transporting Dilute Particle-Laden Flows. Journal of Marine Science and Engineering 9 (9): 961. doi:10.3390/jmse9090961.
  • Zindani, D., A. K. Roy, and K. Kumar. 2017. Comparison of Stresses in Blade of a Mixed Flow Pump Impeller Designed Using Mean Stream Line Method and Free Vortex Method. Materials Today: Proceedings 4 (8): 9333–9340. doi:10.1016/j.matpr.2017.07.293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.