175
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of strain rate on triaxial extension behavior of silty clay

, , &
Pages 366-375 | Received 11 Nov 2021, Accepted 11 Feb 2022, Published online: 04 Mar 2022

References

  • Andersen, K. H. 2009. Bearing Capacity under Cyclic Loading—Offshore, along the Coast, and on Land. The 21st Bjerrum Lecture Presented in Oslo, 23 November 2007. Canadian Geotechnical Journal 46 (5): 513–535. doi:10.1139/T09-003.
  • Bemben, S. M., and H. J. Myers. 1974. The Influence of Rate of Penetration on Static Cone Resistance in Connecticut River Valley Varved Clay. Proceedings of the European Symposium on Penetration Testing, 2 (2): 33–43. Stockholm: National Swedish Council for Building Research.
  • Byrne, P., and W. Finn. 1978. Breakout of Submerged Structures Buried to Shallow Depth. Canadian Geotechnical Journal 15 (2): 146–154. doi:10.1139/t78-015.
  • Cabalar, A. F., and R. A. Hasan. 2013. Compressional behaviour of various size/shape sand–clay mixtures with different pore fluids. Engineering Geology 164 (Complete): 36–49.
  • Cabalar, A. F., and S. Demir. 2019. Fall-cone testing of unsaturated sand-clay mixtures. Geotechnical Engineering 172 (5): 432–441.
  • Chen, R., C. Gaudin, and M. J. Cassidy. 2012. Investigation of the Vertical Uplift Capacity of Deep Water Mudmats in Clay. Canadian Geotechnical Journal 49 (7): 853–865. doi:10.1139/t2012-037.
  • Christensen, E. D., S. Carstensen, M. T. Madsen, P. A. Hesselbjerg, and C. J. Nielsen. 2017. Pore Water Pressure under a Gravity Based Structure under the Influence of Waves. ASME 2017 36th International Conference on Ocean, V010T09A085–V010T09A085. Offshore and Arctic Engineering American Society of Mechanical Engineers, Trondheim, Norway.
  • Chung, S. F. 2005. Characterisation of Soft Soils for Deep Water Developments. PhD thesis., University of Western Australia.
  • Chung, S. F., M. F. Randolph, and J. A. Schneider. 2006. Effect of Penetration Rate on Penetrometer Resistance in Clay. Journal of Geotechnical and Geoenvironmental Engineering 132 (9): 1188–1196. doi:10.1061/(ASCE)1090-0241(2006)132:9(1188).
  • Doherty, J., H. Alguire, and D. Muir Wood. 2012. Evaluating Modified Cam Clay Parameters from Undrained Triaxial Compression Data Using Targeted Optimization. Canadian Geotechnical Journal 49 (11): 1285–1292. doi:10.1139/t2012-088.
  • Gao, Y. B. 2013. Compression and Extension Yield of an Anisotropically Consolidated Soil. Soils and Foundations 53 (3): 431–442. doi:10.1016/j.sandf.2013.04.005.
  • Ghaffari, S. A., E. Sattari, A. Hamidi, G. Tavakoli Mehrjardi, and A. Farshi Homayoun Rooz. 2021. Experimental Study on Bearing Capacity of Shell Strip Footings near Geotextile-Reinforced Earth Slopes. Journal of Central South University 28 (8): 2527–2543. doi:10.1007/s11771-021-4784-9.
  • Gourvenec, S., M. F. Randolph, and H. E. Acosta-Martinez. 2012. Centrifuge Study of Capacity of a Skirted Foundation under Eccentric Transient and Sustained Uplift. Géotechnique 62 (4): 317–328.
  • Graham, J., J. H. Crooks, and A. L. Bell. 1983. Time Effects on the Stress-Strain Behaviour of Natural Soft Clays. Géotechnique 33 (3): 327–340. doi:10.1680/geot.1983.33.3.327.
  • Haeri, S. M., and A. Hamidi. 2005. Steady State and Liquefaction Characteristics of Gravely Sands. Geotechnical and Geological Engineering 23 (2): 141–156. doi:10.1007/s10706-003-4995-x.
  • Hinchberger, S. D., and R. K. Rowe. 1998. Modelling the Rate-Sensitive Characteristics of the Gloucester Foundation Soil. Canadian Geotechnical Journal 35 (5): 769–789. doi:10.1139/t98-037.
  • House, A. R., J. R. M. S. Oliveira, and M. F. Randolph. 2001. Evaluating the Coefficient of Consolidation Using Penetration Tests. International Journal of Physical Modelling in Geotechnics 1 (3): 17–25. doi:10.1680/ijpmg.2001.010302.
  • Huang, H., M. Huang, and J. Ding. 2018. Calculation of Tangent Modulus of Soils under Different Stress Paths. Mathematical Problems in Engineering 2018 (PT 5): 1–11.
  • Lehane, B. M., C. Gaudin, D. J. Richards, and M. J. Rattley. 2008. Rate Effects on the Vertical Uplift Capacity of Footings Founded in Clay. Géotechnique 58 (1): 13–21. doi:10.1680/geot.2008.58.1.13.
  • Li, X., Y. Tian, C. Gaudin, and M. J. Cassidy. 2015. Comparative Study of the Compression and Uplift of Shallow Foundations. Computers and Geotechnics 69: 38–45. doi:10.1016/j.compgeo.2015.04.018.
  • Li, Y. P., J. T. Yi, F. H. Lee, S. H. Goh, and J. Hu. 2018. Effect of Lattice Leg and Sleeve on the Transient Vertical Bearing Capacity of Deeply Penetrated Spudcans in Clay. Journal of Geotechnical and Geoenvironmental Engineering 144 (5): 04018019. doi:10.1061/(ASCE)GT.1943-5606.0001870.
  • Maitra, S., D. White, S. Chatterjee, and D. Choudhury. 2019. Numerical Modelling of Seepage and Tension beneath Plate Anchors. Computers and Geotechnics 108: 131–142. doi:10.1016/j.compgeo.2018.12.022.
  • Ministry of Water Resources (MWR). 1999. Specification of Soil Tests, SL 237-1999. Nanjing, China: National Standards of People’s Republic of China (in Chinese).
  • Randolph, M. F., C. Gaudin, S. M. Gourvenec, D. J. White, N. Boylan, and M. J. Cassidy. 2011. Recent Advances in Offshore Geotechnics for Deep Water Oil and Gas Developments. Ocean Engineering 38 (7): 818–834. doi:10.1016/j.oceaneng.2010.10.021.
  • Randolph, M. F., and S. Hope. 2004. Effect of Cone Velocity on Cone Resistance and Excess Pore Water Pressures. Proceedings of the International Symposium on Engineering Practice and Performance of Soft Deposits (is-Osaka 2004), 147–152. Osaka, Japan.
  • Roy, M., M. Tremblay, F. Tavenas, and P. La Rochelle. 1982. Development of Pore Pressures in Quasi-Static Penetration Tests in Sensitive Clay. Canadian Geotechnical Journal 19 (2): 124–138. doi:10.1139/t82-015.
  • Sheahan, T. C., C. C. Ladd, and J. T. Germaine. 1996. Rate-Dependent Undrained Shear Behavior of Saturated Clay. Journal of Geotechnical Engineering 122 (2): 99–108. doi:10.1061/(ASCE)0733-9410(1996)122:2(99).
  • Skempton, A. W. 1954. The Pore-Pressure Coefficients a and B. Géotechnique 4 (4): 143–147. doi:10.1680/geot.1954.4.4.143.
  • Sun, L., Y. Qi, X. Feng, and Z. Liu. 2020. Tensile Capacity of Offshore Bucket Foundations in Clay. Ocean Engineering 197: 106893. doi:10.1016/j.oceaneng.2019.106893.
  • Tanaka, H., A. Tsutsumi, and T. Ohashi. 2014. Unloading Behavior of Clays Measured by CRS Test. Soils and Foundations 54 (2): 81–93. doi:10.1016/j.sandf.2014.02.001.
  • Thieken, K., M. Achmus, and C. Schröder. 2014. On the Behavior of Suction Buckets in Sand under Tensile Loads. Computers and Geotechnics 60: 88–100. doi:10.1016/j.compgeo.2014.04.004.
  • Watson, P. G., N. Suemasa, and M. F. Randolph. 2000. Evaluating Undrained Shear Strength Using the Vane Shear Apparatus. Proceedings of the 10th International Conference on Offshore and Polar Engineering, ISOPE 00, 2, 485–493, Seattle.
  • Yan, S., J. Zhang, Y. Tian, and L. Sun. 2016. Pore Water Pressure Characteristics in Isotropic Consolidated Saturated Clay under Unloading Conditions. Journal of Marine Science and Technology 24 (1): 19–25.
  • Yuan, J., and H. V. Nguyen. 2011. Laboratory Study on Soil Shear Stiffness and Strength under Unloading Conditions. Journal of Testing and Evaluation 39 (5): 821–830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.