458
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Comparison of different treatment methods on macro-micro characteristics of Yellow River silt solidified by MICP technology

ORCID Icon, , , , &
Pages 425-435 | Received 11 Nov 2021, Accepted 10 Mar 2022, Published online: 28 Mar 2022

References

  • Achal, V., A. Mukerjee, and M. Sudhakara. 2013. Biogenic Treatment Improves the Durability and Remediates the Cracks of Concrete Structures. Construction and Building Materials 48: 1–5. doi:10.1016/j.conbuildmat.2013.06.061.
  • Barkouki, T. H., B. C. Martinez, B. M. Mortensen, T. S. Weathers, J. D. Dejon, T. R. Ginn, N. F. Spycher, et al. 2011. Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments. Transport in Porous Media 90 (1): 23–39. doi:10.1007/s11242-011-9804-z.
  • Bernardi, D., J. T. Dejong, B. M. Montoya, and B. C. Martinez. 2014. Bio-Bricks: Biologically Cemented Sandstone Bricks. Construction and Building Materials 55: 462–469. doi:10.1016/j.conbuildmat.2014.01.019.
  • Burbank, M., T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford. 2013. Geotechnical Tests of Sands following Bioinduced Calcite Precipitation Catalyzed by Indigenous Bacteria. Journal of Geotechnical and Geoenvironmental Engineering 139 (6): 928–936. doi:10.1061/(ASCE)GT.1943-5606.0000781.
  • Cardoso, Rafaela., Inês. Pires, Sofia O. D. Duarte, and Gabriel A. Monteiro. 2018. Effects of Clay's Chemical Interactions on Biocementation. Applied Clay Science 156: 96–103. doi:10.1016/j.clay.2018.01.035.
  • Cheng, L, and R. Cord-ruwisch. 2012. In Situ Soil Cementation with Ureolytic Bacteria by Surface Percolation. Ecological Engineering 42 (42): 64–72. doi:10.1016/j.ecoleng.2012.01.013.
  • Cheng, L., T. Kobayashi, and M. A. Shahin. 2020. Microbially Induced Calcite Precipitation for Production of Bio-Bricks Treated at Partial Saturation Condition. Construction and Building Materials 231: 117095. doi:10.1016/j.conbuildmat.2019.117095.
  • Cheng, L, and M. A. Shahin. 2016. Urease Active Bioslurry: A Novel Soil Improvement Approach Based on Microbially Induced Carbonate Precipitation. Canadian Geotechnical Journal 53 (9): 1376–1385. doi:10.1139/cgj-2015-0635.
  • Cheng, L., M. A. Shahin, and J. Chu. 2019. Soil Bio-Cementation Using a New One-Phase Low-pH Injection Method. Acta Geotechnica 14 (3): 615–626. doi:10.1007/s11440-018-0738-2.
  • Cheng, L., M. A. Shahin, and R. Cord-ruwisch. 2017. Surface Percolation for Soil Improvement by Biocementation Utilizing in Situ Enriched Indigenous Aerobic and Anaerobic Ureolytic Soil Microorganisms. Geomicrobiology Journal 34 (6): 546–556. doi:10.1080/01490451.2016.1232766.
  • Chu, J., V. Ivanov, V. Stabnikov, and B. Li. 2013. Microbial Method for Construction of an Aquaculture Pond in Sand. Géotechnique 63 (10): 871–875. doi:10.1680/geot.SIP13.P.007.
  • Chu, J., V. Stabnikov, and V. Ivanov. 2012. Microbially Induced Calcium Carbonate Precipitation on Surface or in the Bulk of Soil. Geomicrobiology Journal 29 (6): 544–549. doi:10.1080/01490451.2011.592929.
  • Dejong, J. T., M. B. Fritzges, and K. Nusslein. 2006. Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering 132 (11): 1381–1392. doi:10.1061/(ASCE)1090-0241(2006)132:11(1381).
  • Harkes, M. P., L. A. Van Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. Van Loosdrecht. 2010. Fixation and Distribution of Bacterial Activity in Sand to Induce Carbonate Precipitation for Ground Reinforcement. Ecological Engineering 36 (2): 112–117. doi:10.1016/j.ecoleng.2009.01.004.
  • Ivanov, V, and J. Chu. 2008. Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ. Reviews in Environmental Science and Bio/Technology 7 (2): 139–153. doi:10.1007/s11157-007-9126-3.
  • Ivanov, V., J. Chu, V. Stabnikov, and B. Li. 2015. Strengthening of Soft Marine Clay Using Bioencapsulation. Marine Georesources & Geotechnology 33 (4): 320–329. doi:10.1080/1064119X.2013.877107.
  • Jan, O. Q, and B. A. Mir. 2018. Strength Behaviour of Cement Stabilised Dredged Soil. International Journal of Geosynthetics and Ground Engineering 4 (2): 1–14. doi:10.1007/s40891-018-0133-y.
  • Jiang, N. J, and K. Soga. 2017. The Applicability of Microbially Induced Calcite Precipitation (MICP) for Internal Erosion Control in Gravel–Sand Mixtures. Géotechnique 67 (1): 42–55. doi:10.1680/jgeot.15.P.182.
  • Jiang, N. J, and K. Soga. 2019. Erosional Behavior of Gravel-Sand Mixtures Stabilized by Microbially Induced Calcite Precipitation (MICP). Soils and Foundations 59 (3): 699–709. doi:10.1016/j.sandf.2019.02.003.
  • Keykha, H. A., B. B. K. Huat, and A. Asadi. 2014. Electrokinetic Stabilization of Soft Soil Using Carbonate-Producing Bacteria. Geotechnical and Geological Engineering 32 (4): 739–747. doi:10.1007/s10706-014-9753-8.
  • Khan, M. N. H., G. G. N. N. Amarakoon, S. Shimazaki, and S. Kawasaki. 2015. Coral Sand Solidification Test Based on Microbially Induced Carbonate Precipitation Using Ureolytic Bacteria. Materials TRANSACTIONS 56 (10): 1725–1732. doi:10.2320/matertrans.M-M2015820.
  • Lee, M. L., W. S. Ng, and Y. Tanaka. 2013. Stress-Deformation and Compressibility Responses of Bio-Mediated Residual Soils. Ecological Engineering 60: 142–149. doi:10.1016/j.ecoleng.2013.07.034.
  • Li, C., F. Amini, H. Zhang, L. Li, and Q. Zhao. 2014. A Full Contact Flexible Mold for Preparing Samples Based on Microbial-Induced Calcite Precipitation Technology. Geotechnical Testing Journal 37 (5): 20130090–20130921. doi:10.1520/GTJ20130090.
  • Lin, H., M. T. Suleiman, and D. G. Brown. 2020. Investigation of Pore-Scale CaCO3 Distributions and Their Effects on Stiffness and Permeability of Sands Treated by Microbially Induced Carbonate Precipitation (MICP). Soils and Foundations 60 (4): 944–961. doi:10.1016/j.sandf.2020.07.003.
  • Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021. Strength and Permeability of Bentonite-Assisted Biocemented Coarse Sand. Canadian Geotechnical Journal 58 (7): 969–981. doi:10.1139/cgj-2020-0045.
  • Meng, H., Y. Gao, J. He, Y. Qi, and L. Hang. 2021. Microbially Induced Carbonate Precipitation for Wind Erosion Control of Desert Soil: Field-Scale Tests. Geoderma 383: 114723. doi:10.1016/j.geoderma.2020.114723.
  • Mitchell, J. K, and J. C. Santamarina. 2007. Closure to Biological Considerations in Geotechnical Engineering by James K. Mitchell and J. Carlos Santamarina. Journal of Geotechnical and Geoenvironmental Engineering 133 (4): 486–486. doi:10.1061/(ASCE)1090-0241(2007)133:4(486).
  • Montoya, B. M., J. T. Dejong, and R. W. Boulanger. 2013. Dynamic Response of Liquefiable Sand Improved by Microbial-Induced Calcite Precipitation. Géotechnique 63 (4): 302–312. doi:10.1680/geot.SIP13.P.019.
  • Roden, Eric E., Michael R. Leonardo, and Grant Ferris. 2002. Immobilization of Strontium during Iron Biomineralization Coupled to Dissimilatory Hydrous Ferric Oxide Reduction. Geochimica et Cosmochimica Acta 66 (16): 2823–2839. doi:10.1016/S0016-7037(02)00878-5.
  • Rong, H., C. Qian, and L. Li. 2012. Influence of Molding Process on Mechanical Properties of Sandstone Cemented by Microbe Cement. Construction and Building Materials 28 (1): 238–243. doi:10.1016/j.conbuildmat.2011.08.039.
  • Sharma, Animesh, and R. Ramkrishnan. 2016. Study on Effect of Microbial Induced Calcite Precipitates on Strength of Fine Grained Soils. Perspectives in Science 8: 198–202. doi:10.1016/j.pisc.2016.03.017.
  • Soon, N. W., L. M. Lee, T. C. Khun, and H. S. Ling. 2013. Improvements in Engineering Properties of Soils through Microbial-Induced Calcite Precipitation. KSCE Journal of Civil Engineering 17 (4): 718–728. doi:10.1007/s12205-013-0149-8.
  • Stocks Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological Precipitation of CaCO3. Soil Biology and Biochemistry 31 (11): 1563–1571. doi:10.1016/S0038-0717(99)00082-6.
  • Tian, Z., X. Tang, Z. Xiu, and Z. Xue. 2020. Effect of Different Biological Solutions on Microbially Induced Carbonate Precipitation and Reinforcement of Sand. Marine Georesources & Geotechnology 38 (4): 450–460. doi:10.1080/1064119X.2019.1595229.
  • Van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. Van der Zon, and M. C. M. Van Loosdrecht. 2010. Potential Soil Reinforcement by Biological Denitrification. Ecological Engineering 36 (2): 168–175. doi:10.1016/j.ecoleng.2009.03.026.
  • Van Paassen, L. A., R. Ghose, T. J. M. Van der Linden, W. R. L. Van der Star, and M. C. M. Van Loosdrecht. 2010. Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment. Journal of Geotechnical and Geoenvironmental Engineering 136 (12): 1721–1728. doi:10.1061/(ASCE)GT.1943-5606.0000382.
  • Warthmann, R., Y. Van Lith, C. Vasconcelos, J. A. Mckenzie, and A. M. Karpoff. 2000. Bacterially Induced Dolomite Precipitation in Anoxic Culture Experiments. Geology 28 (12): 1091–1096. doi:10.1130/0091-7613(2000)28<1091:BIDPIA > 2.0.CO;2.
  • Whiffin, V. S., L. A. Van Paassen, and M. P. Harkes. 2007. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiology Journal 24 (5): 417–423. doi:10.1080/01490450701436505.
  • Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel Naga. 2020. Restraint of Particle Breakage by Biotreatment Method. Journal of Geotechnical and Geoenvironmental Engineering 146 (11): 04020123. doi:10.1061/(ASCE)GT.1943-5606.0002384.
  • Xiao, Y., C. Zhao, Y. Sun, S. Wang, H. Wu, H. Chen, and H. Liu. 2021. Compression Behavior of MICP-Treated Sand with Various Gradations. Acta Geotechnica 16 (5): 1391–1400. doi:10.1007/s11440-020-01116-2.
  • Zhao, J., H. Tong, Y. Shan, J. Yuan, Q. Peng, and J. Liang. 2021. Effects of Different Types of Fibers on the Physical and Mechanical Properties of MICP-Treated Calcareous Sand. Materials 14 (2): 268–268. doi:10.3390/ma14020268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.