392
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental and numerical study on lateral response of pile-group for offshore wind turbines in sand

, &
Pages 524-543 | Received 30 Jan 2022, Accepted 13 Apr 2022, Published online: 27 Apr 2022

References

  • AASHTO., L. R. F. D. 2012., AASHTO LRFD Bridge Design Specifications. Washington, DC, USA: American Association of State Highway and Transportation Officials.
  • Ashour, M., P. Pilling, and G. Norris. 2004. “Lateral Behavior of Pile Groups in Layered Soils.” Journal of Geotechnical and Geoenvironmental Engineering 130 (6): 580–592. doi:10.1061/(ASCE)1090-0241(2004)130:6(580).
  • Bhattacharya, S. 2014. “Challenges in Design of Foundations for Offshore Wind Turbines.” Engineering & Technology Reference 1 (1): 922.
  • Biehl, F, and E. Lehmann. 2006. “Collisions of Ships with Offshore Wind Turbines: Calculation and Risk Evaluation.” In Offshore Wind Energy, 281–304. Berlin, Heidelberg: Springer.
  • Bolton, M. D. 1986. “The Strength and Dilatancy of Sands.” Géotechnique 36 (1): 65–78. doi:10.1680/geot.1986.36.1.65.
  • Brown, C., and B. Foley. 2015. “Achieving a Cost-Competitive Offshore Wind Power Industry: What is the Most Effective Policy Framework?” https://ora.ox.ac.uk/objects/uuid:00c029bc-1933-47d9-bf3b-471f2168e88b
  • Browning, M. S., and C. S. Lenox. 2020. “Contribution of Offshore Wind to the Power Grid: US Air Quality Implications.” Applied Energy 276: 115474. doi:10.1016/j.apenergy.2020.115474.
  • Brown, D. A., C. Morrison, and L. C. Reese. 1988. “Lateral Load Behavior of Pile Group in Sand.” Journal of Geotechnical Engineering 114 (11): 1261–1276. doi:10.1061/(ASCE)0733-9410(1988)114:11(1261).
  • Brown, D. A., L. C. Reese, and M. W. O'Neill. 1987. “Cyclic Lateral Loading of a Large-Scale Pile Group.” Journal of Geotechnical Engineering 113 (11): 1326–1343. doi:10.1061/(ASCE)0733-9410(1987)113:11(1326).
  • Byrne, B. W, and G. T. Houlsby. 2006. “Assessing Novel Foundation Options for Offshore Wind Turbines.” In World Maritime Technology Conference. London:[sn].
  • Byrne, B. W., and G. T. Houlsby. 2003. “Foundations for Offshore Wind Turbines.” Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 361 (1813): 2909–2930. doi:10.1098/rsta.2003.1286.
  • Byrne, B. W., F. Villalobos, G. T. Houlsby, and C. M. Martin. 2003. “Laboratory Testing of Shallow Skirted Foundations in Sand.” In BGA International Conference on Foundations: Innovations, Observations, Design and Practice: Proceedings of the International Conference Organised by British Geotechnical Association and Held in Dundee, Scotland on 2–5th September 2003, 161–173. London, UK: Thomas Telford Publishing.
  • Chakraborty, T., and R. Salgado. 2010. “Dilatancy and Shear Strength of Sand at Low Confining Pressures.” Journal of Geotechnical and Geoenvironmental Engineering 136 (3): 527–532. doi:10.1061/(ASCE)GT.1943-5606.0000237.
  • Chandrasekaran, V. 2003. “Centrifuge Modelling in Earthquake Geotechnical Engineering.” Energy 3 (1): 571.
  • Chen, D., P. Gao, S. Huang, C. Li, and X. Yu. 2020. “Static and Dynamic Loading Behavior of a Hybrid Foundation for Offshore Wind Turbines.” Marine Structures 71: 102727. doi:10.1016/j.marstruc.2020.102727.
  • Chen, Z., and F. Blaabjerg. 2009. “Wind Farm—A Power Source in Future Power Systems.” Renewable and Sustainable Energy Reviews 13 (6–7): 1288–1300. doi:10.1016/j.rser.2008.09.010.
  • Díaz, H., and C. G. Soares. 2020. “Review of the Current Status, Technology and Future Trends of Offshore Wind Farms.” Ocean Engineering 209: 107381. doi:10.1016/j.oceaneng.2020.107381.
  • Ding, H., Y. Liu, P. Zhang, and C. Le. 2015. “Model Tests on the Bearing Capacity of Wide-Shallow Composite Bucket Foundations for Offshore Wind Turbines in Clay.” Ocean Engineering 103: 114–122. doi:10.1016/j.oceaneng.2015.04.068.
  • DNV, D. N. V. 2013. Design of Offshore Wind Turbine Structures. Standard DNV-OSJ101. Baerum, Norway: Det Norske Veritas AS (DNV).
  • Fan, S., B. Bienen, and M. F. Randolph. 2021. “Effects of Monopile Installation on Subsequent Lateral Response in Sand. II: Lateral Loading.” Journal of Geotechnical and Geoenvironmental Engineering 147 (5): 04021022. doi:10.1061/(ASCE)GT.1943-5606.0002504.
  • Fellenius, B. H. 2005. “Discussion of “Centrifuge Model Study of Laterally Loaded Pile Groups in Clay” by T. Ilyas, CF Leung, YK Chow, and SS Budi.” Journal of Geotechnical and Geoenvironmental Engineering 131 (10): 1305–1308. doi:10.1061/(ASCE)1090-0241(2005)131:10(1305).
  • Guo, Y., S. Dong, J. Li, and X. B. Yu. 2020. “Numerical and Experimental Study on Soil Plug Resistance of Open-Ended Pipe Pile with a Restriction Plate.” Advances in Civil Engineering 2020: 1–14. doi:10.1155/2020/9415904.
  • GWEC 2020., “Global Wind Report 2019.” Bruxelas: [sn].
  • Hao, E., and C. Liu. 2017. “Evaluation and Comparison of anti-Impact Performance to Offshore Wind Turbine Foundations: Monopile, Tripod, and Jacket.” Ocean Engineering 130: 218–227. doi:10.1016/j.oceaneng.2016.12.008.
  • Hiscock, K., H. Tyler-Walters, and H. Jones. 2002. “High Level Environmental Screening Study for Offshore Wind Farm Developments–Marine Habitats and Species Project.” Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/000). https://www.researchgate.net/publication/291908359
  • Hong, Y., B. He, L. Z. Wang, Z. Wang, C. W. W. Ng, and D. Mašín. 2017. “Cyclic Lateral Response and Failure Mechanisms of Semi-Rigid Pile in Soft Clay: centrifuge Tests and Numerical Modelling.” Canadian Geotechnical Journal 54 (6): 806–824. doi:10.1139/cgj-2016-0356.
  • Houlsby, G. T., L. B. Ibsen, and B. W. Byrne. 2005. “Suction Caissons for Wind Turbines.” Frontiers in Offshore Geotechnics: ISFOG, Perth, WA, Australia: 75–93. [Database][Mismatch
  • Jalbi, S., and S. Bhattacharya. 2020. “Concept Design of Jacket Foundations for Offshore Wind Turbines in 10 Steps.” Soil Dynamics and Earthquake Engineering 139: 106357. doi:10.1016/j.soildyn.2020.106357.
  • Jalbi, S., G. Nikitas, S. Bhattacharya, and N. Alexander. 2019. “Dynamic Design Considerations for Offshore Wind Turbine Jackets Supported on Multiple Foundations.” Marine Structures 67: 102631. doi:10.1016/j.marstruc.2019.05.009.
  • Jara, F. A. V. 2006. “Model Testing of Foundations for Offshore Wind Turbines.” Doctoral diss., Oxford University.
  • Jin, J., P. Zhou, C. Li, X. Guo, and M. Zhang. 2019. “Low-Carbon Power Dispatch with Wind Power Based on Carbon Trading Mechanism.” Energy 170: 250–260. doi:10.1016/j.energy.2018.12.126.
  • Klinkvort, R. T. 2013. “Centrifuge Modelling of Drained Lateral Pile-Soil Response: Application for Offshore Wind Turbine Support Structures.” Technical University of Denmark.
  • Koh, J. H., and E. Y. K. Ng. 2016. “Downwind Offshore Wind Turbines: Opportunities, Trends and Technical Challenges.” Renewable and Sustainable Energy Reviews 54: 797–808. doi:10.1016/j.rser.2015.10.096.
  • Kong, D., K. Wen, B. Zhu, Z. Zhu, and Y. Chen. 2019. “Centrifuge Modeling of Cyclic Lateral Behaviors of a Tetrapod Piled Jacket Foundation for Offshore Wind Turbines in Sand.” Journal of Geotechnical and Geoenvironmental Engineering 145 (11): 04019099. doi:10.1061/(ASCE)GT.1943-5606.0002160.
  • Leung, C. F., Y. K. Chow, and R. F. Shen. 2000. “Behavior of Pile Subject to Excavation-Induced Soil Movement.” Journal of Geotechnical and Geoenvironmental Engineering 126 (11): 947–954. doi:10.1061/(ASCE)1090-0241(2000)126:11(947).
  • Li, D., L. Feng, and Y. Zhang. 2014. “Model Tests of Modified Suction Caissons in Marine Sand under Monotonic Lateral Combined Loading.” Applied Ocean Research 48: 137–147. doi:10.1016/j.apor.2014.08.005.
  • Li, D., Y. Zhang, L. Feng, and Y. Gao. 2015. “Capacity of Modified Suction Caissons in Marine Sand under Static Horizontal Loading.” Ocean Engineering 102: 1–16. doi:10.1016/j.oceaneng.2015.04.033.
  • Li, J., X. Wang, Y. Guo, and X. B. Yu. 2020. “The Loading Behavior of Innovative Monopile Foundations for Offshore Wind Turbine Based on Centrifuge Experiments.” Renewable Energy. 152: 1109–1120. doi:10.1016/j.renene.2020.01.112.
  • Li, W., B. Zhu, and M. Yang. 2017. “Static Response of Monopile to Lateral Load in Overconsolidated Dense Sand.” Journal of Geotechnical and Geoenvironmental Engineering 143 (7): 04017026. doi:10.1061/(ASCE)GT.1943-5606.0001698.
  • Li, X., X. Zeng, X. Yu, and X. Wang. 2021. “Seismic Response of a Novel Hybrid Foundation for Offshore Wind Turbine by Geotechnical Centrifuge Modeling.” Renewable Energy. 172: 1404–1416. doi:10.1016/j.renene.2020.11.140.
  • Lian, J., Y. Zhao, X. Dong, C. Lian, and H. Wang. 2021. “An Experimental Investigation on Long-Term Performance of the Wide-Shallow Bucket Foundation Model for Offshore Wind Turbine in Saturated Sand.” Ocean Engineering 228: 108921. doi:10.1016/j.oceaneng.2021.108921.
  • Lindeboom, H. J., H. J. Kouwenhoven, M. J. N. Bergman, S. Bouma, S. Brasseur, R. Daan, R. C. Fijn, et al. 2011. “Short-Term Ecological Effects of an Offshore Wind Farm in the Dutch Coastal Zone; a Compilation.” Environmental Research Letters 6 (3): 035101. doi:10.1088/1748-9326/6/3/035101.
  • Lu, W., and G. Zhang. 2018. “Influence Mechanism of Vertical-Horizontal Combined Loads on the Response of a Single Pile in Sand.” Soils and Foundations 58 (5): 1228–1239. doi:10.1016/j.sandf.2018.07.002.
  • Lu, W., G. Zhang, and A. Wang. 2017. “Bearing Behavior of Multiple Piles for Offshore Wind Driven Generator.” Ocean Engineering 129: 538–548. doi:10.1016/j.oceaneng.2016.10.038.
  • Malekjafarian, A., S. Jalilvand, P. Doherty, and D. Igoe. 2021. “Foundation Damping for Monopile Supported Offshore Wind Turbines: A Review.” Marine Structures 77: 102937. doi:10.1016/j.marstruc.2021.102937.
  • Manzari, M. T., and Y. F. Dafalias. 1997. “A Critical State Two-Surface Plasticity Model for Sands.” Géotechnique 47 (2): 255–272. doi:10.1680/geot.1997.47.2.255.
  • Mao, D., C. Zhong, L. Zhang, and G. Chu. 2015. “Dynamic Response of Offshore Jacket Platform Including Foundation Degradation under Cyclic Loadings.” Ocean Engineering 100: 35–45. doi:10.1016/j.oceaneng.2015.03.012.
  • McDowell, G. R. 2002. “On the Yielding and Plastic Compression of Sand.” Soils and FOUNDATIONS 42 (1): 139–145. doi:10.3208/sandf.42.139.
  • McVay, M., L. Zhang, T. Molnit, and P. Lai. 1998. “Centrifuge Testing of Large Laterally Loaded Pile Groups in Sands.” Journal of Geotechnical and Geoenvironmental Engineering 124 (10): 1016–1026. doi:10.1061/(ASCE)1090-0241(1998)124:10(1016).
  • McVay, M., R. Casper, and T. I. Shang. 1995. “Lateral Response of Three-Row Groups in Loose to Dense Sands at 3D and 5D Pile Spacing.” Journal of Geotechnical Engineering 121 (5): 436–441. doi:10.1061/(ASCE)0733-9410(1995)121:5(436).
  • Michelis, P. N. 1981. “Work-Softening and Hardening Behaviour of Granular Rocks.” Rock Mechanics Felsmechanik M⏧Canique Des Roches 14 (3): 187–200. doi:10.1007/BF01250450.
  • MOT, M.O.T. 2012. Code for Pile Foundation of Harbor Engineering. Beijing, China: Ministry of Transport Beijing.
  • Murphy, G., D. Igoe, P. Doherty, and K. Gavin. 2018. “3D FEM Approach for Laterally Loaded Monopile Design.” Computers and Geotechnics 100: 76–83. doi:10.1016/j.compgeo.2018.03.013.
  • Nakai, T., and M. Hinokio. 2004. “A Simple Elastoplastic Model for Normally and over Consolidated Soils with Unified Material Parameters.” Soils and Foundations 44 (2): 53–70. doi:10.3208/sandf.44.2_53.
  • Page, A. M., R. T. Klinkvort, S. Bayton, Y. Zhang, and H. P. Jostad. 2021. “A Procedure for Predicting the Permanent Rotation of Monopiles in Sand Supporting Offshore Wind Turbines.” Marine Structures 75: 102813. doi:10.1016/j.marstruc.2020.102813.
  • Patra, N. R., and P. J. Pise. 2001. “Ultimate Lateral Resistance of Pile Groups in Sand.” Journal of Geotechnical and Geoenvironmental Engineering 127 (6): 481–487. doi:10.1061/(ASCE)1090-0241(2001)127:6(481).
  • Poulos, H. G. 1975. “Lateral Load-Deflection Prediction for Pile Groups.” Journal of the Geotechnical Engineering Division 101 (1): 19–34. doi:10.1061/AJGEB6.0000139.
  • Prasad, Y. V., and T. R. Chari. 1999. “Lateral Capacity of Model Rigid Piles in Cohesionless Soils.” Soils and Foundations 39 (2): 21–29. doi:10.3208/sandf.39.2_21.
  • Ramirez, L., D. Fraile, and G. Brindley. 2020. Offshore Wind in Europe: Key Trends and Statistics 2019. Brussels, Belgium: Wind Europe.
  • Randolph, M. F. 1981. “The Response of Flexible Piles to Lateral Loading.” Géotechnique 31 (2): 247–259. doi:10.1680/geot.1981.31.2.247.
  • Randolph, M. F., E. C. Leong, and G. T. Houlsby. 1991. “One-Dimensional Analysis of Soil Plugs in Pipe Piles.” Géotechnique 41 (4): 587–598. doi:10.1680/geot.1991.41.4.587.
  • Rollins, K. M., K. T. Peterson, and T. J. Weaver. 1998. “Lateral Load Behavior of Full-Scale Pile Group in Clay.” Journal of Geotechnical and Geoenvironmental Engineering 124 (6): 468–478. doi:10.1061/(ASCE)1090-0241(1998)124:6(468).
  • Rollins, K. M., R. J. Olsen, J. J. Egbert, D. H. Jensen, K. G. Olsen, and B. H. Garrett. 2006. “Pile Spacing Effects on Lateral Pile Group Behavior: load Tests.” Journal of Geotechnical and Geoenvironmental Engineering 132 (10): 1262–1271. doi:10.1061/(ASCE)1090-0241(2006)132:10(1262).
  • Rollins, K. M., T. M. Gerber, J. D. Lane, and S. A. Ashford. 2005. “Lateral Resistance of a Full-Scale Pile Group in Liquefied Sand.” Journal of Geotechnical and Geoenvironmental Engineering 131 (1): 115–125. doi:10.1061/(ASCE)1090-0241(2005)131:1(115).
  • RP2A-WSD, A. 2007., American Petroleum Institute Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design. Washington: American Petroleum Institute.
  • Simulia, D. S. 2010. Abaqus Analysis User's Manual. Pawtucket, USA: Dassault Systemes.
  • Standard, A. S. T. M. 2006. “D4254–91: Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • Verdugo, R., and K. Ishihara. 1996. “The Steady State of Sandy Soils.” Soils and Foundations 36 (2): 81–91. doi:10.3208/sandf.36.2_81.
  • Veritas, D. N. 2004. Design of Offshore Wind Turbine Structure. Offshore Standard DNV-OS-J101. Norway: DET NORSKE VERITA.
  • Wang, X., and J. Li. 2020. “Parametric Study of Hybrid Monopile Foundation for Offshore Wind Turbines in Cohesionless Soil.” Ocean Engineering 218: 108172. doi:10.1016/j.oceaneng.2020.108172.
  • Wang, X., X. Dong, Z. Zhang, J. Zhang, G. Ma, and X. Yang. 2022. “Compaction Quality Evaluation of Subgrade Based on Soil Characteristics Assessment Using Machine Learning.” Transportation Geotechnics 32: 100703. doi:10.1016/j.trgeo.2021.100703.
  • Wang, X., X. Yang, and X. Zeng. 2017. “Seismic Centrifuge Modelling of Suction Bucket Foundation for Offshore Wind Turbine.” Renewable Energy. 114: 1013–1022. doi:10.1016/j.renene.2017.07.103.
  • Wang, X., X. Zeng, and J. Li. 2019. “Vertical Performance of Suction Bucket Foundation for Offshore Wind Turbines in Sand.” Ocean Engineering 180: 40–48. doi:10.1016/j.oceaneng.2019.03.049.
  • Wang, X., X. Zeng, J. Li, and X. Yang. 2018. “Lateral Bearing Capacity of Hybrid Monopile-Friction Wheel Foundation for Offshore Wind Turbines by Centrifuge Modelling.” Ocean Engineering 148: 182–192. doi:10.1016/j.oceaneng.2017.11.036.
  • Wang, X., X. Zeng, J. Li, X. Yang, and H. Wang. 2018. “A Review on Recent Advancements of Substructures for Offshore Wind Turbines.” Energy Conversion and Management 158: 103–119. doi:10.1016/j.enconman.2017.12.061.
  • Wang, X., X. Zeng, X. Li, and J. Li. 2020. “Liquefaction Characteristics of Offshore Wind Turbine with Hybrid Monopile Foundation via Centrifuge Modelling.” Renewable Energy. 145: 2358–2372. doi:10.1016/j.renene.2019.07.106.
  • Wang, X., X. Zeng, X. Yang, and J. Li. 2018. “Feasibility Study of Offshore Wind Turbines with Hybrid Monopile Foundation Based on Centrifuge Modeling.” Applied Energy 209: 127–139. doi:10.1016/j.apenergy.2017.10.107.
  • Wang, X., X. Zeng, X. Yang, and J. Li. 2019. “Seismic Response of Offshore Wind Turbine with Hybrid Monopile Foundation Based on Centrifuge Modelling.” Applied Energy 235: 1335–1350. doi:10.1016/j.apenergy.2018.11.057.
  • Wen, K., X. Wu, and B. Zhu. 2020. “Numerical Investigation on the Lateral Loading Behaviour of Tetrapod Piled Jacket Foundations in Medium Dense Sand.” Applied Ocean Research 100: 102193. doi:10.1016/j.apor.2020.102193.
  • Yang, X., X. Zeng, and X. Wang. 2018. “Lateral-Moment Loading Capacity and Bearing Behavior of Suction Bucket Foundations for Offshore Wind Turbines in Sand.” International Journal of Geomechanics 18 (11): 04018152. doi:10.1061/(ASCE)GM.1943-5622.0001279.
  • Yang, X., X. Zeng, X. Wang, and H. Yu. 2018. “Performance of Monopile-Friction Wheel Foundations under Lateral Loading for Offshore Wind Turbines.” Applied Ocean Research 78: 14–24. doi:10.1016/j.apor.2018.06.005.
  • Yang, X., X. Zeng, X. Wang, J. Berrila, and X. Li. 2019. “Performance and Bearing Behavior of Monopile-Friction Wheel Foundations under Lateral-Moment Loading for Offshore Wind Turbines.” Ocean Engineering 184: 159–172. doi:10.1016/j.oceaneng.2019.05.043.
  • Ye, B., G. Ye, F. Zhang, and A. Yashima. 2007. “Experiment and Numerical Simulation of Repeated Liquefaction-Consolidation of Sand.” Soils and Foundations 47 (3): 547–558. doi:10.3208/sandf.47.547.
  • Zeng, X., J. Wu, and B. A. Young. 1998. “Influence of Viscous Fluids on Properties of Sand.” Geotechnical Testing Journal 21 (1): 45–51.
  • Zhang, F., B. Ye, and G. Ye. 2011. “Unified Description of Sand Behavior.” Frontiers of Architecture and Civil Engineering in China 5 (2): 121–150. doi:10.1007/s11709-011-0104-z.
  • Zhang, H. H., and J. C. Small. 2000. “Analysis of Capped Pile Groups Subjected to Horizontal and Vertical Loads.” Computers and Geotechnics 26 (1): 1–21. doi:10.1016/S0266-352X(99)00029-4.
  • Zhang, M., B. Tan, and J. Xu. 2016. “Smart Fatigue Load Control on the Large-Scale Wind Turbine Blades Using Different Sensing Signals.” Renewable Energy. 87: 111–119. doi:10.1016/j.renene.2015.10.011.
  • Zhang, M., H. Yang, and J. Xu. 2017. “Numerical Investigation of Azimuth Dependent Smart Rotor Control on a Large-Scale Offshore Wind Turbine.” Renewable Energy. 105: 248–256. doi:10.1016/j.renene.2016.12.063.
  • Zhang, P., Y. Han, H. Ding, and S. Zhang. 2015. “Field Experiments on Wet Tows of an Integrated Transportation and Installation Vessel with Two Bucket Foundations for Offshore Wind Turbines.” Ocean Engineering 108: 769–777. doi:10.1016/j.oceaneng.2015.09.001.
  • Zheng, G., S. Y. Peng, C. W. Ng, and Y. Diao. 2012. “Excavation Effects on Pile Behaviour and Capacity.” Canadian Geotechnical Journal 49 (12): 1347–1356. doi:10.1139/t2012-095.
  • Zhu, B., K. Wen, D. Kong, Z. Zhu, and L. Wang. 2018. “A Numerical Study on the Lateral Loading Behaviour of Offshore Tetrapod Piled Jacket Foundations in Clay.” Applied Ocean Research 75: 165–177. doi:10.1016/j.apor.2018.04.001.
  • Zhu, B., K. Wen, L. J. Wang, and Y. M. Chen. 2018. “Comparison of Centrifuge Model Tests of Tetrapod Piled Jacket Foundation in Saturated Sand and Clay.” Physical Modelling in Geotechnics 1: 768–772.
  • Zhu, B., K. Wen, T. Li, L. Wang, and D. Kong. 2019. “Experimental Study on Lateral Pile–Soil Interaction of Offshore Tetrapod Piled Jacket Foundations in Sand.” Canadian Geotechnical Journal 56 (11): 1680–1689. doi:10.1139/cgj-2018-0292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.