155
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimental investigation the characteristics of three-dimensional wave field and its effect on sandy sloping seabed

, ORCID Icon, , , , & show all
Pages 791-805 | Received 21 Jun 2021, Accepted 29 May 2022, Published online: 29 Jul 2022

References

  • Goda, Y., and Y. Suzuki. 1976. Estimation of Incident and Reflected Waves in Random Wave Experiments. Coastal Engineering 48: 828–845.
  • Guo, Z., D.-S. Jeng, H. Y. Zhao, W. Guo, and L. Z. Wang. 2019. Effect of Seepage Flow on Sediment Incipient Motion around a Free Spanning Pipeline. Coastal Engineering 143: 50–62. doi:10.1016/j.coastaleng.2018.10.012.
  • Hsu, J. R. C., and D.-S. Jeng. 1994. Wave-Induced Soil Response in an Unsaturated Anisotropic Seabed of Finite Thickness. International Journal for Numerical and Analytical Methods in Geomechanics 18 (11): 785–807. doi:10.1002/nag.1610181104.
  • Hsu, S.-K., J. Kuo, C.-L. Lo, C.-H. Tsai, W.-B. Doo, C.-Y. Ku, J.-C. Sibuet, et al. 2008. Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences 19 (6): 767–772. doi:10.3319/TAO.2008.19.6.767(PT).
  • Jeng, D.-S. 2003. Wave-Induced Seafloor Dynamics. Applied Mechanics Reviews 56 (4): 407–429. doi:10.1115/1.1577359.
  • Jeng, D.-S. 2018. Mechanics of Wave-Seabed-Structure Interactions: modelling, Processes and Applications. Cambridge: Cambridge University Press.
  • Jeng, D.-S., J.-H. Ye, J.-S. Zhang, and P. L.-F. Liu. 2013. An Integrated Model for the Wave-Induced Seabed Response around Marine Structures: model Verifications and Applications. Coastal Engineering 72 (1): 1–19. doi:10.1016/j.coastaleng.2012.08.006.
  • Le Méhauté, B. 1976. An Introduction to Hydrodynamics and Water Waves. Heidelberg: Springer.
  • Li, K., Z. Guo, L. Wang, and H. Jiang. 2019. Effect of Seepage Flow on Shields Number around a Fixed and Sagging Pipeline. Ocean Engineering. 172: 487–500. doi:10.1016/j.oceaneng.2018.12.033.
  • Liao, C. C., D.-S. Jeng, and L. L. Zhang. 2015. An Analytical Approximation for Dynamic Soil Response of a Porous Seabed Due to Combined Wave and Currents Loading. Journal of Coastal Research 315 (5): 1120–1128. doi:10.2112/JCOASTRES-D-13-00120.1.
  • Madsen, O. S. 1978. Wave Induced Pore Pressures and Effective Stresses in Porous Bed. Géotechnique 28 (4): 377–393. doi:10.1680/geot.1978.28.4.377.
  • McDougal, W. G., Y. T. Tsai, P. L. F. Liu, and E. C. Clukey. 1989. Wave-Induced Pore Water Pressure Accumulation in Marine Soils. Journal of Offshore Mechanics and Arctic Engineering 111 (1): 1–11. doi:10.1115/1.3257133.
  • Miyamoto, J., S. Sassa, and H. Sekiguchi. 2004. Progressive Solidification of a Liquefied Sand Layer during Continued Wave Loading. Géotechnique 54 (10): 617–629. doi:10.1680/geot.2004.54.10.617.
  • Ohyama, T., W. Kioka, and A. Tada. 1995. Applicability of Numerical Models to Nonlinear Dispersive Waves. Coastal Engineering 24 (3–4): 297–313. doi:10.1016/0378-3839(94)00033-T.
  • Ohyama, T., and K. Nadaoka. 1994. Transformation of a Nonlinear Wave Train Passing over a Submerged Shelf without Breaking. Coastal Engineering 24 (1–2): 1–22. doi:10.1016/0378-3839(94)90024-8.
  • Qi, W. G., C. F. Li, D.-S. Jeng, F. P. Gao, and Z. D. Liang. 2019. Combined Wave-Current Induced Excess Pore-Pressure in a Sandy Seabed: Flume Observations and Comparisons with Theoretical Models. Coastal Engineering 147: 89–98. doi:10.1016/j.coastaleng.2019.02.006.
  • Sassa, S., and H. Sekiguchi. 1999. Wave-Induced Liquefaction of Beds of Sand in a Centrifuge. Géotechnique 49 (5): 621–638. doi:10.1680/geot.1999.49.5.621.
  • Seed, H. B, and M. S. Rahman. 1978. Wave—Induced Pore Water Pressure in Relation to Ocean Floor Stability of Cohesionless Soils. Marine Geotechnology 3 (2): 123–150. doi:10.1080/10641197809379798.
  • Sumer, B. M. 2014. Liquefaction around Marine Structures. Singapore: World Scientific.
  • Sumer, B. M, and J. Fredsøe. 2002. The Mechanism of Scour in the Marine Environment. NJ: World Scientific.
  • Sumer, B. M., J. Fredsøe, S. Christensen, and M. Lind. 1999. Sinking/Floatation of Pipelines and Other Objects in Liquefied Soil under Waves. Coastal Engineering 38 (2): 53–90. doi:10.1016/S0378-3839(99)00024-1.
  • Sumer, B. M., H. A. A. Guner, N. M. Hansen, D. R. Fuhrman, and J. Fredsøe. 2013. Laboratory Observations of Flow and Sediment Transport Induced by Plunging Regular Waves. Journal of Geophysical Research: Oceans 118 (11): 6161–6182. doi:10.1002/2013JC009324.
  • Sumer, B. M., F. Hatipoglu, J. Fredsøe, and S. K. Sumer. 2006. The Sequence of Sediment Behaviour during Wave-Induced Liquefaction. Sedimentology 53 (3): 611–629. doi:10.1111/j.1365-3091.2006.00763.x.
  • Sumer, B. M., M. B. Sen, I. Karagali, B. Ceren, J. Fredsøe, M. Sottile, L. Zilioli, and D. R. Fuhrman. 2011. Flow and Sediment Transport Induced by a Plunging Solitary Wave. Journal of Geophysical Research 116 (C1): C01008. doi:10.1029/2010JC006435.
  • Tzang, S. Y. 1992. Water Wave-Induced Soil Fluidization in a Cohesionless Fine-Grained Seabed. PhDdiss., University of California, Berkeley.
  • Wen, F., J. H. Wang, and X. L. Zhou. 2016. Response of Saturated Porous Seabed under Combined Short-Crested Waves and Current Loading. Journal of Coastal Research 32 (2): 286–300.
  • Yamamoto, T., H. L. Koning, H. Sellmeijer, and E. V. Van Hijum. 1978. On the Response of a Poro-Elastic Bed to Water Waves. Journal of Fluid Mechanics 87 (1): 193–206. doi:10.1017/S0022112078003006.
  • Ye, J. H., and D.-S. Jeng. 2012. Response of Porous Seabed to Nature Loadings: waves and Currents. Journal of Engineering Mechanics 138 (6): 601–613. doi:10.1061/(ASCE)EM.1943-7889.0000356.
  • Zhang, E. Y. 2004. Fundamental Study on Distributed Optical Fiber Sensing Technology for Submarine Pipeline, 1–2. Hangzhou: Zhejiang University.
  • Zhang, Y., D.-S. Jeng, F. P. Gao, and J. S. Zhang. 2013. An Analytical Solution for Response of a Porous Seabed to Combined Wave and Currents Loading. Ocean Engineering 57 (57): 240–247. doi:10.1016/j.oceaneng.2012.09.001.
  • Zhao, H.-Y, and D.-S. Jeng. 2015. Numerical Study of Wave-Induced Soil Response in a Sloping Seabed in the Vicinity of a Breakwater. Applied Ocean Research 51: 204–221. doi:10.1016/j.apor.2015.04.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.