208
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Temperature effect on the axial behaviour of a pipeline buried in soft clay

ORCID Icon, , , , & ORCID Icon
Pages 912-926 | Received 05 Jul 2021, Accepted 03 Jul 2022, Published online: 05 Sep 2022

References

  • Abuel-Naga, H. M., D. T. Bergado, A. Bouazza, and G. V. Ramana. 2007. Volume Change Behaviour of Saturated Clays under Drained Heating Conditions: experimental Results and Constitutive Modeling. Canadian Geotechnical Journal 44 (8): 942–956. doi:10.1139/t07-031.
  • Abuel-Naga, H. M., D. T. Bergado, and B. F. Lim. 2007. Effect of Temperature on Shear Strength and Yielding Behaviour of Soft Bangkok Clay. Soils and Foundations 47 (3): 423–436. doi:10.3208/sandf.47.423.
  • Akhtar, S. 2018. Numerical Analysis of Pipeline Uplift Resistance in a Frozen Clay Soil Subjected to Temperature Changes. Doctoral diss., Concordia University, Montréal, Québec, Canada.
  • Al-Khazaali, M, and S. K. Vanapalli. 2019. Axial Force–Displacement Behaviour of a Buried Pipeline in Saturated and Unsaturated Sand. Géotechnique 69 (11): 986–1003. doi:10.1680/jgeot.17.P.116.
  • Amaral, C. D. S., A. M. D. Costa, C. D. O. Cardoso, A. Andueza, and A. Garcia. 2002. Application of the ZIGZAG Concept to a Heated Pipeline in the Soft Soil of the Guanabara Bay. In 4th International Pipeline Conference, Calgary, Alberta, Canada, 29 September–3 October, pp. 2071–2076. doi:10.1115/IPC2002-27202.
  • Boudali, M., S. Leroueil, and M. Srinivasa. 1994. Viscous Behaviour of Natural Clays. In Proceedings of 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India. 5–10 January, 411–416.
  • British Standard 1377. 1990. Methods of Test for Soils for Civil Engineering Purposes. British Standards Institution, London.
  • Bruton, D., D. J. White, D. Carr, and C. Y. Cheuk. 2008. Pipe-Soil Interaction during Lateral Buckling and Pipeline Walking- The SAFEBUCK Joint Industry Project. Deep Offshore Technology Conference, Houston, TX, 5–8 May, OTC 19589, pp. 1–20.
  • Cao, Y., W. B. Liu, and L. Sun. 2021. Analytical Solutions for Lateral Global Buckling of Deep-Sea Pipelines Based on Multi-Stage Soil Resistance Model. Marine Georesources & Geotechnology 1–11. doi:10.1080/1064119X.2021.1956029.
  • Cao, Y, and S. Zhang. 2019. Numerical Analysis of Cross-Section Ovalization in the Deep-Sea Pipeline Lateral Buckling Process. Marine Georesources & Geotechnology 37 (4): 477–487. doi:10.1080/1064119X.2018.1466940.
  • Carr, M., F. Sinclair, and D. A. S. Bruton. 2008. Pipeline Walking-Understanding the Field Layout Challenges, and Analytical Solutions Developed for the Safebuck JIP. Offshore Technology Conference,Houston, TX, 5–8 May. OTC 17945, pp. 1–11.
  • Chatterjee, S., M. F. Randolph, and D. J. White. 2012. The Effects of Penetration Rate and Strain Softening on the Vertical Penetration Resistance of Seabed Pipelines. Géotechnique 62 (7): 573–582. doi:10.1680/geot.10.P.075.
  • Drnevich, P. V., M. Tidfors, and G. Sällfors. 1989. Temperature Effect on Preconsolidation Pressure. Geotechnical Testing Journal 12 (1): 93–97. doi:10.1520/GTJ10679J.
  • Eriksson, L. G. 1989. Temperature Effects on Consolidation Properties of Sulphide Clays. In Proceedings of 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, 13–18 August, Vol. 3, pp. 2087–2090.
  • Graham, J., N. Tanaka, T. Crilly, and M. Alfaro. 2001. Modified Cam-Clay Modelling of Temperature Effects in Clays. Canadian Geotechnical Journal 38 (3): 608–621. doi:10.1139/t00-125.
  • Hobbs, R. E. 1984. In-Service Buckling of Heated Pipelines. Journal of Transportation Engineering 110 (2): 175–189. doi:10.1061/(ASCE)0733-947X(1984)110:2(175).
  • Hong, Z. H., B. B. Xu, and W. B. Liu. 2021. Theoretical Method to Calculate Pipeline Thermal Transient-Induced Walking Rate considering Nonlinear Time-Dependent Soil Resistance. Marine Georesources & Geotechnology 39 (6): 696–708. doi:10.1080/1064119X.2020.1749739.
  • Houhou, R., A. Awad, S. Sadek, and S. Najjar. 2018. Effect of Heating and Cooling Cycles on the Skin Friction of Energy Piles in Soft Clays. In International Foundation Congress and Equipment Expo 2018, Orlando, FL, 5–10 March, pp. 653–663. doi:10.1061/9780784481578.062.
  • Huang, L., Y. Sheng, J. C. Wu, W. Cao, E. X. Peng, and X. Y. Zhang. 2020. Experimental Study on Mechanical Interaction between Buried Pipe and Soil during Freezing. Cold Regions Science and Technology 178: 103129. doi:10.1016/j.coldregions.2020.103129.
  • Jinesh, K. B., S. Y. Krylov, H. Valk, M. Dienwiebel, and J. W. M. Frenken. 2008. Thermolubricity in Atomic-Scale Friction. Physical Review B 78 (15): 155440. doi:10.1103/PhysRevB.78.155440.
  • Ju, G. T, and S. Kyriakides. 1988. Thermal Buckling of Offshore Pipelines. Journal of Offshore Mechanics and Arctic Engineering 110 (4): 355–364. doi:10.1115/1.3257073.
  • Kianian, M, and H. Shiri. 2021. The Effect of Backfilling Stiffness on Lateral Response of the Shallowly Trenched-Backfilled Pipelines in Clay. Marine Georesources & Geotechnology 39 (5): 610–622. doi:10.1080/1064119X.2020.1736699.
  • Krylov, S. Y., K. B. Jinesh, H. Valk, M. Dienwiebel, and J. W. M. Frenken. 2005. Thermally Induced Suppression of Friction at the Atomic Scale. Physical Review E 71 (6): 325–326. doi:10.1103/PhysRevE.71.065101.
  • Laloui, L., C. Cekerevac, and B. Francois. 2005. Constitutive Modelling of the Thermo-Plastic Behaviour of Soils. Revue Européenne de Génie Civil 9 (5–6): 635–650. doi:10.1080/17747120.2005.9692774.
  • Li, H. W., Y. M. Lai, L. Z. Wang, X. S. Yang, N. S. Jiang, L. Li, C. Wang, and B. C. Yang. 2019. Review of the State of the Art: Interactions between a Buried Pipeline and Frozen Soil. Cold Regions Science and Technology 157: 171–186. doi:10.1016/j.coldregions.2018.10.014.
  • Mašín, D, and N. Khalili. 2012. A Thermo-Mechanical Model for Variably Saturated Soils Based on Hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics 36 (12): 1461–1485. doi:10.1002/nag.1058.
  • Monfared, M., J. Sulem, P. Delage, and M. Mohajerani. 2014. Temperature and Damage Impact on the Permeability of Opalinus Clay. Rock Mechanics and Rock Engineering 47 (1): 101–110. doi:10.1007/s00603-013-0459-7.
  • Moritz, L. 1995. Geotechnical Properties of Clay at Elevated Temperatures. Report: 47, Linköping Swedish Geotechnical Institute.
  • Ng, C. W. W, and C. Zhou. 2014. Cyclic Behaviour of an Unsaturated Silt at Various Suctions and Temperatures. Géotechnique 64 (9): 709–720. doi:10.1680/geot.14.P.015.
  • Otomi, O. K., U. P. Onochie, and A. I. Obanor. 2020. Steady State Analysis of Heat Transfer in a Fully Buried Crude Oil Pipeline. International Journal of Heat and Mass Transfer 146: 118893. doi:10.1016/j.ijheatmasstransfer.2019.118893.
  • Park, D. S., M. B. Shin, and Y. K. Seo. 2020. Heat-Transfer Characteristics of Subsea Pipelines Embedded in Multilayered Soils. SPE Journal 25 (03): 1128–1139. doi:10.2118/199353-PA.
  • Randolph, M. F., D. J. White, and Y. Yan. 2012. Modeling the Axial Soil Resistance on Deep-Water Pipelines. Géotechnique 62 (9): 837–846. doi:10.1680/geot.12.OG.010.
  • Salami, A. 2022. A Numerical Investigation on the Axial Pullout Tests of Buried Pipes. Doctoral Diss., Memorial University of Newfoundland, St. Johns, Newfoundland, Canada.
  • Sang, Q. Y., Y. L. Xiong, G. B. Liu, and R. Y. Zheng. 2021. Experimental Study on the Effect of Temperature on Marine Clay Consolidation with Vertical Sand Drains. Marine Georesources & Geotechnology 39 (11): 1387–1395. doi:10.1080/1064119X.2020.1837309.
  • Shi, R, and L. Wang. 2015. Single Buoyancy Load to Trigger Lateral Buckles in Pipelines on a Soft Seabed. Journal of Engineering Mechanics 141 (5): 04014151. doi:10.1061/(ASCE)EM.1943-7889.0000863.
  • Stewart, D. P., and M. F. Randolph. 1994. T-bar penetration testing in soft clay. Journal of Geotechnical Engineering 120 (12): 2230–2235. doi:10.1061/(ASCE)0733-9410(1994)120:12(2230).
  • Stutz, H., D. Mašín, F. Wuttke, and B. Prädel. 2016. Thermo-Mechanical Hypoplastic Interface Model for Fine-Grained Soils. In Energy Geotechnics – Proceedings of the 1st International Conference on Energy Geotechnics, Kiel, Germany, 29–31 August, 351–357.
  • Sultan, N., P. Delage, and Y. J. Cui. 2002. Temperature Effects on the Volume Change Behaviour of Boom Clay. Engineering Geology 64 (2–3): 135–145. doi:10.1016/S0013-7952(01)00143-0.
  • Tian, Y., W. Wu, M. J. Cassidy, and M. F. Randolph. 2021. A Complete Analytical Solution for Axial Pipeline Walking considering Seabed Resistance as Rigid Plastic Behaviour. Géotechnique 72 (9): 810–824. doi:10.1680/jgeot.20.P.135.
  • Wang, K. J., L. Z. Wang, and Y. Hong. 2020. Modelling Thermo-Elastic–Viscoplastic Behaviour of Marine Clay. Acta Geotechnica 15 (9): 2415–2431. doi:10.1007/s11440-020-00917-9.
  • Wang, L. Z., K. J. Wang, and Y. Hong. 2016. Modeling Temperature-Dependent Behavior of Soft Clay. Journal of Engineering Mechanics 142 (8): 04016054. doi:10.1061/(ASCE)EM.1943-7889.0001108.
  • Wang, K. J. 2017. Temperature Dependent Behavior of Soft Soils˙˙, Doctoral diss., Zhejiang University, Hangzhou, Zhejiang, China. (in Chinese)
  • Wang, K. J., Z. G. Shan, K. M. Shen, M. Y. Wang, W. B. Du, and B. Y. Mao. 2021. The Thermo-Mechanical Behaviour of Clay in Different Stress and Temperature Paths. In GeoChina International Conference 2021 on Civil & Transportation Infrastructures, Nanchang, China, 18–19 September, 150–165. Cham: Springer. doi:10.1007/978-3-030-79857-4_10.
  • Wheeler, S. J., A. Näätänen, M. Karstunen, and M. Lojander. 2003. An Anisotropic Elastoplastic Model for Soft Clays. Canadian Geotechnical Journal 40 (2): 403–418. doi:10.1139/t02-119.
  • White, D. J., D. A. S. Bruton, M. D. Bolton, A. J. Hill, J. C. Ballard, and T. Langford. 2011. SAFEBUCK JIP - Observations of Axial Pipe-Soil Interaction from Testing on Soft Natural Clays. In Proceedings of the Offshore Technology Conference, Houston, TX, 2–5 May, OTC 21249, 1–29.
  • White, D. J., W. A. Take, and M. D. Bolton. 2003. Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry. Géotechnique 53 (7): 619–631. doi:10.1680/geot.2003.53.7.619.
  • Yan, Y., D. J. White, and M. Randolph. 2014. Cyclic Consolidation and Axial Friction for Seabed Pipelines. Géotechnique Letters 4 (3): 165–169. doi:10.1680/geolett.14.00032.
  • Yan, Y. 2013. Novel Methods for Characterising Pipe-Soil Interaction Forces in Situ in Deep Water. Doctoral Diss., University of Western Australia, Perth, Australia.
  • Yao, Y. P, and A. N. Zhou. 2013. Non-Isothermal Unified Hardening Model: A Thermo -Elasto-Plastic Model for Clays. Géotechnique 63 (15): 1328–1345. doi:10.1680/geot.13.P.035.
  • Yu, B., C. Li, Z. W. Zhang, X. Liu, J. J. Zhang, J. J. Wei, S. Y. Sun, and J. P. Huang. 2010. Numerical Simulation of a Buried Hot Crude Oil Pipeline under Normal Operation. Applied Thermal Engineering 30 (17–18): 2670–2679. doi:10.1016/j.applthermaleng.2010.07.016.
  • Yue, H. Y., P. Z. Zhuang, X. G. Song, Y. J. Song, and J. P. Wang. 2021. Soil Restraint on Buried Pipelines during Oblique Relative Movements in Sand. Marine Georesources & Geotechnology 39 (12): 1505–1515. doi:10.1080/1064119X.2020.1849472.
  • Zhang, W, and S. Kyriakides. 2021. Controlled Pipeline Lateral Buckling by Reeling Induced Curvature Imperfections. Marine Structures 77: 102905. doi:10.1016/j.marstruc.2020.102905.
  • Zhou, C, and C. W. W. Ng. 2015. A Thermomechanical Model for Saturated Soil at Small and Large Strains. Canadian Geotechnical Journal 52 (8): 1101–1110. doi:10.1139/cgj-2014-0229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.