280
Views
13
CrossRef citations to date
0
Altmetric
Note

Bearing capacity of conical footing on anisotropic and heterogeneous clays using FEA and ANN

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1053-1070 | Received 05 May 2022, Accepted 19 Jul 2022, Published online: 22 Aug 2022

References

  • Brinkgreve, R., and P. A. Vermeer. 2019. PLAXIS 2D Reference Manual CONNECT Edition V20. Delft: Delft University.
  • Butterfield, R. 1999. Dimensional Analysis for Geotechnical Engineering. Géotechnique 49 (3): 357–366. doi:10.1680/geot.1999.49.3.357.
  • Casagrande, A., and N. Carrillo. 1944. Shear Failure of Anisotropic Soils. Contributions to Soil Mechanics (BSCE).
  • Cassidy, M., and G. Houlsby. 2002. Vertical Bearing Capacity Factors for Conical Footings on Sand. Géotechnique 52 (9): 687–692. doi:10.1680/geot.2002.52.9.687.
  • Chakraborty, M., and J. Kumar. 2015. Bearing Capacity Factors for a Conical Footing Using Lower-and Upper-Bound Finite Elements Limit Analysis. Canadian Geotechnical Journal 52 (12): 2134–2140. doi:10.1139/cgj-2014-0507.
  • Chakraborty, M., and J. Kumar. 2016. The Size Effect of a Conical Footing on Nγ. Computers and Geotechnics 76: 212–221. doi:10.1016/j.compgeo.2016.03.010.
  • D’Ignazio, M., T. Lansivaara, and H. P. Jostad. 2017. Failure in Anisotropic Sensitive Clays: A Finite Element Study of the Perni Failure Test. Canadian Geotechnical Journal 54 (7): 1013–1033. doi:10.1139/cgj-2015-0313.
  • Fathipour, H., A. S. Siahmazgi, M. Payan, M. Veiskarami, and R. Jamshidi Chenari. 2021. Limit Analysis of Modified Pseudodynamic Lateral Earth Pressure in Anisotropic Frictional Medium Using Finite-Element and Second-Order Cone Programming. International Journal of Geomechanics 21 (2): 04020258. doi:10.1061/(ASCE)GM.1943-5622.0001924.
  • Fathipour, H., M. Payan, R. J. Chenari, and B. Fatahi. 2022. General Failure Envelope of Eccentrically and Obliquely Loaded Strip Footings Resting on an Inherently Anisotropic Granular Medium. Computers and Geotechnics 146: 104734. doi:10.1016/j.compgeo.2022.104734.
  • Feng, X., S. Gourvenec, and Z. Shen. 2017. Shape Effects on Undrained Capacity of Mudmat Foundations under Multi-Directional Loading. Ocean Engineering 135: 221–235. doi:10.1016/j.oceaneng.2017.02.033.
  • Garson, G. D. 1991. Interpreting Neural Network Connection Weights. AI Expert 6 (4): 46–51.
  • Gaudin, C., M. J. Cassidy, B. Bienen, and M. S. Hossain. 2011. Recent Contributions of Geotechnical Centrifuge Modelling to the Understanding of Jack-up Spudcan Behavior. Ocean Engineering 38 (7): 900–914. doi:10.1016/j.oceaneng.2010.12.001.
  • Gevrey, M., I. Dimopoulos, and S. Lek. 2003. Review and Comparison of Methods to Study the Contribution of Variables in Artificial Neural Network Models. Ecological Modelling 160 (3): 249–264. doi:10.1016/S0304-3800(02)00257-0.
  • Ghiassian, H., R. Jamshidi, and G. Poorebrahim. 2006. Neural Networks Analysis of Silty Sand Reinforced by Carpet Wastes. Kuwait Journal of Science and Engineering 33 (1): 119.
  • Grimstad, G., L. Andresen, and H. P. Jostad. 2012. NGI-ADP: Anisotropic Shear Strength Model for Clay. International Journal for Numerical and Analytical Methods in Geomechanics 36 (4): 483–497. doi:10.1002/nag.1016.
  • Hansen, L. A., and W. Clough. 1981. The Significance of Clay Anisotropy in Finite Element Analysis of Supported Excavations. In: Proceedings of Symposium of Implementation of Computer Procedure of Stress Strain Laws in Geotechnical Engineering, vol I–II, Chicago IL, 3–6 August.
  • Houlsby, G. T., and C. M. Martin. 2003. Undrained Bearing Capacity Factors for Conical Footings on Clay. Géotechnique 53 (5): 513–520. doi:10.1680/geot.2003.53.5.513.
  • Hsieh, P. G., C. Y. Ou, and H. T. Liu. 2008. Basal Heave Analysis of Excavations with Consideration of Anisotropic Undrained Strength of Clay. Canadian Geotechnical Journal 45 (6): 788–799. doi:10.1139/T08-006.
  • Jamshidi Chenari, R., and A. Mahigir. 2014. The Effect of Spatial Variability and Anisotropy of Soils on Bearing Capacity of Shallow Foundations. Civil Engineering Infrastructures Journal 47 (2): 199–213.
  • Jamshidi Chenari, R., S. Pourvahedi Roshandeh, and M. Payan. 2019. Stochastic Analysis of Foundation Immediate Settlement on Heterogeneous Spatially Random Soil considering Mechanical Anisotropy. SN Applied Sciences 1 (7): 1–15. doi:10.1007/s42452-019-0684-0.
  • Jearsiripongkul, T., V. Q. Lai, S. Keawsawasvong, T. S. Nguyen, C. N. Van, C. Thongchom, and P. Nuaklong. 2022. Prediction of Uplift Capacity of Cylindrical Caissons in Anisotropic and Inhomogeneous Clays Using Multivariate Adaptive Regression Splines. Sustainability 14 (8): 4456. doi:10.3390/su14084456.
  • Jearsiripongkul, T., S. Keawsawasvong, C. Thongchom, and C. Ngamkhanong. 2022. Prediction of the Stability of Various Tunnel Shapes Based on Hoek–Brown Failure Criterion Using Artificial Neural Network (ANN). Sustainability 14 (8): 4533. doi:10.3390/su14084533.
  • Jearsiripongkul, T., S. Keawsawasvong, R. Banyong, S. Seehavong, K. Sangjinda, C. Thongchom, J. T. Chavda, and C. Ngamkhanong. 2022. Stability Evaluations of Unlined Horseshoe Tunnels Based on Extreme Learning Neural Network. Computation 10 (6): 81. doi:10.3390/computation10060081.
  • Keawsawasvong, S. 2021. Bearing Capacity of Conical Footings on Clays considering Combined Effects of Anisotropy and Non-Homogeneity. Ships and Offshore Structures, 1–12. doi:10.1080/17445302.2021.1987110.
  • Keawsawasvong, S., and V. Q. Lai. 2021. End Bearing Capacity Factor for Annular Foundations Embedded in Clay Considering the Effect of the Adhesion Factor. International Journal of Geosynthetics and Ground Engineering 7 (1): 15. doi:10.1007/s40891-021-00261-2.
  • Keawsawasvong, S., J. Shiau, K. Limpanawannakul, and S. Panomchaivath. 2022. Stability Charts for Closely Spaced Strip Footings on Hoek-Brown Rock Mass. Geotechnical and Geological Engineering 40 (6): 3051–3066. doi:10.1007/s10706-022-02077-x.
  • Keawsawasvong, S., J. Shiau, C. Ngamkhanong, V. Qui Lai, and C. Thongchom. 2022. Undrained Stability of Ring Foundations: Axisymmetry, Anisotropy, and Nonhomogeneity. International Journal of Geomechanics 22 (1): 04021253. doi:10.1061/(ASCE)GM.1943-5622.0002229.
  • Keawsawasvong, S., J. Shiau, and K. Yoonirundorn. 2022. Bearing Capacity of Cylindrical Caissons in Cohesive-Frictional Soils Using Axisymmetric Finite Element Limit Analysis. Geotechnical and Geological Engineering 40 (7): 3929–3941. doi:10.1007/s10706-022-02129-2.
  • Keawsawasvong, S., and B. Ukritchon. 2020. Design Equation for Stability of Shallow Unlined Circular Tunnels in Hoek-Brown Rock Masses. Bulletin of Engineering Geology and the Environment 79 (8): 4167–4190. doi:10.1007/s10064-020-01798-8.
  • Keawsawasvong, S., and B. Ukritchon. 2021. Undrained Stability of Plane Strain Active Trapdoors in Anisotropic and Non-Homogeneous Clays. Tunnelling and Underground Space Technology 107: 103628. doi:10.1016/j.tust.2020.103628.
  • Keawsawasvong, S., and B. Ukritchon. 2022. Design Equation for Stability of a Circular Tunnel in an Anisotropic and Heterogeneous Clay. Underground Space 7 (1): 76–93. doi:10.1016/j.undsp.2021.05.003.
  • Keawsawasvong, S., K. Yoonirundorn, and T. Senjuntichai. 2021. Pullout Capacity Factor for Cylindrical Suction Caissons in Anisotropic Clays Based on Anisotropic Undrained Shear Failure Criterion. Transportation Infrastructure Geotechnology 8 (4): 629–644. doi:10.1007/s40515-021-00154-x.
  • Khajehzadeh, M., S. Keawsawasvong, and M. L. Nehdi. 2022. Effective Hybrid Soft Computing Approach for Optimum Design of Shallow Foundations. Sustainability 14 (3): 1847. doi:10.3390/su14031847.
  • Khajehzadeh, M., M. R. Taha, S. Keawsawasvong, H. Mirzaei, and M. Jebeli. 2022. An Effective Artificial Intelligence Approach for Slope Stability Evaluation. IEEE Access 10: 5660–5671. doi:10.1109/ACCESS.2022.3141432.
  • Khatri, V. N., and J. Kumar. 2009. Bearing Capacity Factor N for a Rough Conical Footing. Geomechanics and Engineering 1 (3): 205–218. doi:10.12989/gae.2009.1.3.205.
  • Krabbenhoft, K., S. A. Galindo-Torres, X. Zhang, and J. Krabbenhøft. 2019. AUS: Anisotropic Undrained Shear Strength Model for Clays. International Journal for Numerical and Analytical Methods in Geomechanics 43 (17): 2652–2666. doi:10.1002/nag.2990.
  • Ladd, C. 1991. Stability Analysis during Staged Construction: J Geotech Engng Div ASCE V117, N4, April 1991, P538–615. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts Pergamon.
  • Ladd, C. C., and D. J. DeGroot. 2003. Recommended Practice for Soft Ground Site Characterization: Arthur Casagrande Lecture. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology.
  • Lai, F., F. Chen, and D. Li. 2018. Bearing Capacity Characteristics and Failure Modes of Low Geosynthetic-Reinforced Embankments Overlying Voids. International Journal of Geomechanics 18 (8): 04018085. doi:10.1061/(ASCE)GM.1943-5622.0001206.
  • Lai, F., S. Chen, J. Xue, and F. Chen. 2020. New Analytical Solutions for Shallow Cohesive Soils Overlying Trench Voids under Various Slip Surfaces. Transportation Geotechnics 25: 100411. doi:10.1016/j.trgeo.2020.100411.
  • Lai, F., S. Liu, Y. Deng, Y. Sun, K. Wu, and H. Liu. 2020. Numerical Investigations of the Installation Process of Giant Deep-Buried Circular Open Caissons in Undrained Clay. Computers and Geotechnics 118: 103322. doi:10.1016/j.compgeo.2019.103322.
  • Lai, F., N. Zhang, S. Liu, Y. Sun, and Y. Li. 2021. Ground Movements Induced by Installation of Twin Large Diameter Deeply-Buried Caissons: 3D Numerical Modeling. Acta Geotechnica 16 (9): 2933–2961. doi:10.1007/s11440-021-01165-1.
  • Lai, V. Q., R. Banyong, and S. Keawsawasvong. 2022a. Undrained Sinkhole Collapse in Anisotropic Clays. Arabian Journal of Geosciences 15 (8): 1–13. doi:10.1007/s12517-022-10061-1.
  • Lai, V. Q., B. Banyong, and S. Keawsawasvong. 2022b. Stability of Limiting Pressure behind Soil Gaps in Contiguous Pile Walls in Anisotropic Clays. Engineering Failure Analysis 134: 106049. doi:10.1016/j.engfailanal.2022.106049.
  • Lai, V. Q., D. K. Nguyen, R. Banyong, and S. Keawsawasvong. 2022. Limit Analysis Solutions for Stability Factor of Unsupported Conical Slopes in Clays with Heterogeneity and Anisotropy. International Journal of Computational Materials Science and Engineering 11 (01): 2150030–2150128. doi:10.1142/S2047684121500305.
  • Lai, V. Q., J. Shiau, S. Keawsawasvong, and D. T. Tran. 2022. Bearing Capacity of Ring Foundations on Anisotropic and Heterogenous Clays ∼ FEA, NGI-ADP, and MARS. Geotechnical and Geological Engineering 40 (7): 3913–3928. doi:10.1007/s10706-022-02117-6.
  • Lee, J. K., S. Jeong, and S. Lee. 2016. Undrained Bearing Capacity Factors for Ring Footings in Heterogeneous Soil. Computers and Geotechnics 75: 103–111. doi:10.1016/j.compgeo.2016.01.021.
  • Li, D., S. Li, and Y. Zhang. 2019. Cone-Shaped Hollow Flexible Reinforced Concrete Foundation (CHFRF)–Innovative for Mountain Wind Turbines. Soils and Foundations 59 (5): 1172–1181. doi:10.1016/j.sandf.2019.03.011.
  • Li, D., S. Ma, and Y. Zhang. 2019. Undrained Pullout Capacity of Modified Suction Caisson in Clay by Finite Element Limit Analysis. Marine Georesources & Geotechnology 37 (3): 291–300. doi:10.1080/1064119X.2017.1410869.
  • Li, S., Y. Zhang, and D. Li. 2020. Capacity of Cone-Shaped Hollow Flexible Reinforced Concrete Foundation (CHFRF) in Sand under Horizontal Loading. Advances in Materials Science and Engineering 2020: 1–14. doi:10.1155/2020/6346590.
  • Li, S., Y. Zhang, D. Li, and M. Gao. 2021. Lateral Bearing Capacity of Cone-Shaped Hollow Foundation by Using Limit Equilibrium Method. International Journal of Physical Modelling in Geotechnics 22 (3): 157. doi:10.1680/jphmg.20.00084.
  • Li, Y., and W. Zhang. 2020. Investigation on Passive Pile Responses Subject to Adjacent Tunnelling in Anisotropic Clay. Computers and Geotechnics.127: 103782. doi:10.1016/j.compgeo.2020.103782.
  • Li, Y., W. Zhang, and R. Zhang. 2021. Numerical Investigation on Performance of Braced Excavation Considering Soil Stress Induced Anisotropy. Acta Geotechnica, 1–13.
  • Liang, C., R. Liu, H. Zhang, C. Li, Y. Yuan, and T. Cao. 2021. The Effect of Spudcan Footprints on the Vertical Bearing Capacity of Adjacent Pile Foundations. Ships and Offshore Structures 16 (3): 292–305. doi:10.1080/17445302.2020.1725278.
  • Liu, H., P. Lin, C. Guo, Z. Li, and X. Qin. 2021. A Shallow Artificial Neural Network for Mapping Bond Strength of Soil Nails. Marine Georesources & Geotechnology 39 (3): 280–292. doi:10.1080/1064119X.2019.1697403.
  • Lo, K. Y. 1965. Stability of Slopes in Anisotropic Soils. Journal of the Soil Mechanics and Foundations Division 91 (4): 85–106. doi:10.1061/JSFEAQ.0000778.
  • López, I., L. Aragonés, Y. Villacampa, and P. Compañ. 2018. Artificial Neural Network Modeling of Cross-Shore Profile on Sand Beaches: The Coast of the Province of Valencia (Spain). Marine Georesources & Geotechnology 36 (6): 698–708.
  • Mehralizadeh, H., and M. Makarchian. 2022. A New Method to Predict the Bearing Capacity–Penetration Curve of Spudcans in Multi-Layered Clay Soils. Marine Georesources and Geotechnology 40 (5).
  • Moningka, G., O. B. Sompie, and J. A. R. Sumampouw. 2013. Bearing Capacity of Cone Shaped Foundations with Semi Angle Β Variation and Different Roughness. Jurnal Ilmiah Media Engineering 3 (2).
  • Ngamkhanong, C., and S. Kaewunruen. 2022. Prediction of Thermal-Induced Buckling Failures of Ballasted Railway Tracks Using Artificial Neural Network (ANN). International Journal of Structural Stability and Dynamics 22 (05): 2250049. doi:10.1142/S0219455422500493.
  • Nguyen, D. K., T. P. Nguyen, S. Keawsawasvong, and V. Q. Lai. 2021. Vertical Uplift Capacity of Circular Anchors in Clay by Considering Anisotropy and Non-Homogeneity. Transportation Infrastructure Geotechnology, 1–20.
  • Ouahab, M. Y., A. Mabrouki, R. Frank, M. Mellas, and D. Benmeddour. 2020. Undrained Bearing Capacity of Strip Footings under Inclined Load on Non-Homogeneous Clay Underlain by a Rough Rigid Base. Geotechnical and Geological Engineering 38 (2): 1733–1745. doi:10.1007/s10706-019-01127-1.
  • Ozyildirim, B. M., and M. Kiran. 2021. Levenberg–Marquardt Multi-Classification Using Hinge Loss Function. Neural Networks 143: 564–571. doi:10.1016/j.neunet.2021.07.010.
  • Pan, Q., and D. Dias. 2016. Face Stability Analysis for a Shield-Driven Tunnel in Anisotropic and Nonhomogeneous Soils by the Kinematical Approach. International Journal of Geomechanics 16 (3): 04015076.
  • Park, C. W., H. I. Park, and Y. K. Cho. 2017. Evaluation of the Applicability of Pier Local Scour Formulae Using Laboratory and Field Data. Marine Georesources & Geotechnology 35 (1): 1–7. doi:10.1080/1064119X.2014.954658.
  • Park, Y. S., and S. Lek. 2016. Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling. In Developments in Environmental Modelling, Vol. 28, 123–140. Elsevier.
  • Pakdel, P., R. Jamshidi Chenari, and M. Veiskarami. 2019. An Estimate of the Bearing Capacity of Shallow Foundations on Anisotropic Soil by Limit Equilibrium and Soft Computing Technique. Geomechanics and Geoengineering 14 (3): 202–217. doi:10.1080/17486025.2019.1581276.
  • Pakdel, P., R. Jamshidi Chenari, and M. Veiskarami. 2021. Seismic Bearing Capacity of Shallow Foundations Rested on Anisotropic Deposits. International Journal of Geotechnical Engineering 15 (2): 181–192. doi:10.1080/19386362.2019.1655983.
  • Phuor, T., I. S. Harahap, and C. Y. Ng. 2022. Bearing Capacity Factors for Rough Conical Footing by Viscoplasticity Finite-Element Analysis. International Journal of Geomechanics 22 (1): 04021266. doi:10.1061/(ASCE)GM.1943-5622.0002256.
  • Salmasi, F., R. Norouzi, J. Abraham, B. Nourani, and S. Samadi. 2020. Effect of Inclined Clay Core on Embankment Dam Seepage and Stability through LEM and FEM. Geotechnical and Geological Engineering 38 (6): 6571–6586. doi:10.1007/s10706-020-01455-7.
  • Samadi, M., M. H. Afshar, E. Jabbari, and H. Sarkardeh. 2021. Prediction of Current-Induced Scour Depth around Pile Groups Using MARS, CART, and ANN Approaches. Marine Georesources & Geotechnology 39 (5): 577–588. doi:10.1080/1064119X.2020.1731025.
  • Seidu, J., A. Ewusi, J. S. Y. Kuma, Y. Y. Ziggah, and H. J. Voigt. 2022. Impact of Data Partitioning in Groundwater Level Prediction Using Artificial Neural Network for Multiple Wells. International Journal of River Basin Management, 1–26. doi:10.1080/15715124.2022.2079653.
  • Shiau, J., A. V. Lyamin, and S. W. Sloan. 2006. Application of Pseudo-Static Limit Analysis in Geotechnical Earthquake Design. In Proc., 6th European Conf. on Numerical Methods in Geotechnical Engineering, ed. H. F. Schweiger, 249–255. London: Taylor & Francis.
  • Shiau, J., S. Pather, and R. Ayers. 2006. Developing Physical Models for Geotechnical Teaching and Research. In: Proceedings of the Sixth International Conference on Physical Modelling in Geotechnics, 157–162. Hong Kong.
  • Shiau, J., and F. Al-Asadi. 2020a. Stability Analysis of Twin Circular Tunnels Using Shear Strength Reduction Method. Géotechnique Letters 10 (2): 311–319. doi:10.1680/jgele.19.00003.
  • Shiau, J., and F. Al-Asadi. 2020b. Three-Dimensional Heading Stability of Twin Circular Tunnels. Geotechnical and Geological Engineering 38 (3): 2973–2988. doi:10.1007/s10706-020-01201-z.
  • Shiau, J., and F. Al-Asadi. 2021. Revisiting Circular Tunnel Stability Using Broms and Bennermarks’ Original Stability Number. International Journal of Geomechanics 21 (5): 06021009.
  • Shiau, J., and H. Yu. 2000. Shakedown Analysis of Flexible Pavements. In Proc. of the John Booker Memorial Symposium, ed. D. W. Smith and J. P. Carter, 643–653. Sydney.
  • Shiau, J., B. Chudal, K. Mahalingasivam, and S. Keawsawasvong. 2021. Pipeline Burst-Related Ground Stability in Blowout Condition. Transportation Geotechnics 29: 100587. doi:10.1016/j.trgeo.2021.100587.
  • Shiau, J., J. S. Lee, and F. Al-Asadi. 2021. Three-Dimensional Stability Analysis of Active and Passive Trapdoors. Tunnelling and Underground Space Technology 107: 103635. doi:10.1016/j.tust.2020.103635.
  • Shiau, J., B. Chudal, and S. Keawsawasvong. 2022. Three-Dimensional Sinkhole Stability of Spherical Cavity. Acta Geotechnica. doi:10.1007/s11440-022-01522-8.
  • Shiau, J., S. Keawsawasvong, and J. S. Lee. 2022. Three-Dimensional Stability Investigation of Trapdoors in Collapse and Blowout Conditions. International Journal of Geomechanics 22 (4). doi:10.1061/(ASCE)GM.1943-5622.0002339.
  • Sirimontree, S., T. Jearsiripongkul, V. Q. Lai, A. Eskandarinejad, J. Lawongkerd, S. Seehavong, C. Thongchom, P. Nuaklong, and S. Keawsawasvong. 2022. Prediction of Penetration Resistance of a Spherical Penetrometer in Clay Using Multivariate Adaptive Regression Splines Model. Sustainability 14 (6): 3222. doi:10.3390/su14063222.
  • Sirimontree, S., S. Keawsawasvong, C. Ngamkhanong, S. Seehavong, K. Sangjinda, T. Jearsiripongkul, C. Thongchom, and P. Nuaklong. 2022. Neural Network-Based Prediction Model for the Stability of Unlined Elliptical Tunnels in Cohesive-Frictional Soils. Buildings 12 (4): 444. doi:10.3390/buildings12040444.
  • Tizpa, P., R. Jamshidi Chenari, M. Karimpour Fard, and S. Lemos Machado. 2015. ANN Prediction of Some Geotechnical Properties of Soil from Their Index Parameters. Arabian Journal of Geosciences 8 (5): 2911–2920. doi:10.1007/s12517-014-1304-3.
  • Ukritchon, B., and T. Boonyatee. 2015. Soil Parameter Optimization of the NGI-ADP Constitutive Model for Bangkok Soft Clay. Geotechnical Engineering 46 (1): 28–36.
  • Ukritchon, B., and S. Keawsawasvong. 2017. Error in Ito and Matsui's Limit Equilibrium Solution of Lateral Force on a Row of Stabilizing Piles. Journal of Geotechnical and Geoenvironmental Engineering 143 (9): 02817004. doi:10.1061/(ASCE)GT.1943-5606.0001753.
  • Ukritchon, B, and S. Keawsawasvong. 2019. Design Equations of Uplift Capacity of Circular Piles in Sands. Applied Ocean Research 90: 101844. doi:10.1016/j.apor.2019.06.001.
  • Ukritchon, B, and S. Keawsawasvong. 2020a. Undrained Stability of Unlined Square Tunnels in Clays with Linearly Increasing Anisotropic Shear Strength. Geotechnical and Geological Engineering 38 (1): 897–915. doi:10.1007/s10706-019-01023-8.
  • Ukritchon, B, and S. Keawsawasvong. 2020b. Undrained Lower Bound Solutions for End Bearing Capacity of Shallow Circular Piles in Non-Homogeneous and Anisotropic Clays. International Journal for Numerical and Analytical Methods in Geomechanics 44 (5): 596–632. doi:10.1002/nag.3018.
  • Ukritchon, B., A. J. Whittle, and S. W. Sloan. 2003. Undrained Stability of Braced Excavations in Clay. Journal of Geotechnical and Geoenvironmental Engineering 129 (8): 738–755. doi:10.1061/(ASCE)1090-0241(2003)129:8(738).
  • Ukritchon, B., P. Wongtoythong, and S. Keawsawasvong. 2018. New Design Equation for Undrained Pullout Capacity of Suction Caissons considering Combined Effects of Caisson Aspect Ratio, Adhesion Factor at Interface, and Linearly Increasing Strength. Applied Ocean Research 75: 1–14. doi:10.1016/j.apor.2018.03.007.
  • Ukritchon, B., S. Yoang, and S. Keawsawasvong. 2019. Three-Dimensional Stability Analysis of the Collapse Pressure on Flexible Pavements over Rectangular Trapdoors. Transportation Geotechnics 21: 100277. doi:10.1016/j.trgeo.2019.100277.
  • Ukritchon, B., S. Yoang, and S. Keawsawasvong. 2020. Undrained Stability of Unsupported Rectangular Excavations in Non-Homogeneous Clays. Computers and Geotechnics 117: 103281. doi:10.1016/j.compgeo.2019.103281.
  • Veiskarami, M., R. Jamshidi Chenari, and A. A. Jameei. 2017. Bearing Capacity of Strip Footings on Anisotropic Soils by the Finite Elements and Linear Programming. International Journal of Geomechanics 17 (12): 04017119. doi:10.1061/(ASCE)GM.1943-5622.0001018.
  • Veiskarami, M., R. Jamshidi Chenari, and A. A. Jameei. 2019. A Study on the Static and Seismic Earth Pressure Problems in Anisotropic Granular Media. Geotechnical and Geological Engineering 37 (3): 1987–2005. doi:10.1007/s10706-018-0739-9.
  • Wang, Z., A. Li, L. Wang, X. Zhou, and B. Wu. 2022. Aerodynamic Coefficients Modeling Using Levenberg–Marquardt Algorithm and Network. Aircraft Engineering and Aerospace Technology 94 (3): 336–350. doi:10.1108/AEAT-03-2021-0073.
  • Xiao, Z., Y. Tian, and S. Gourvenec. 2016. A Practical Method to Evaluate Failure Envelopes of Shallow Foundations considering Soil Strain Softening and Rate Effects. Applied Ocean Research 59: 395–407. doi:10.1016/j.apor.2016.06.015.
  • Xing, G., C. Liu, S. Li, and W. Xuan. 2019. HM Bearing Capacity of Cone-Shaped Foundation for Onshore Wind Turbine under Monotonic Horizontal Loading. Advances in Materials Science and Engineering 2019: 1–14. doi:10.1155/2019/3409561.
  • Yang, X. L., and D. C. Du. 2016. Upper Bound Analysis for Bearing Capacity of Nonhomogeneous and Anisotropic Clay Foundation. KSCE Journal of Civil Engineering 20 (7): 2702–2710. doi:10.1007/s12205-016-0087-3.
  • Yin, S. 2021. Undrained Failure Envelope for Skirted Spudcan Foundations in Clay under Combined Loading. Marine Georesources & Geotechnology 40 (2): 1–203. doi:10.1080/1064119X.2021.1879331.
  • Yodsomjai, W., S. Keawsawasvong, and V. Q. Lai. 2021. Limit Analysis Solutions for Bearing Capacity of Ring Foundations on Rocks Using Hoek-Brown Failure Criterion. International Journal of Geosynthetics and Ground Engineering 7 (2): 29. doi:10.1007/s40891-021-00281-y.
  • Yodsomjai, W., S. Keawsawasvong, and S. Likitlersuang. 2021. Stability of Unsupported Conical Slopes in Hoek-Brown Rock Masses. Transportation Infrastructure Geotechnology 8 (2): 279–295. doi:10.1007/s40515-020-00137-4.
  • Yodsomjai, W., S. Keawsawasvong, and T. Senjuntichai. 2021. Undrained Stability of Unsupported Conical Slopes in Anisotropic Clays Based on Anisotropic Undrained Shear Failure Criterion. Transportation Infrastructure Geotechnology 8 (4): 557–568. doi:10.1007/s40515-021-00153-y.
  • Yodsomjai, W., V. Q. Lai, B. Banyong, V. B. Chauhan, C. Thongchom, and S. Keawsawasvong. 2022. A Machine Learning Regression Approach for Predicting Basal Heave Stability of Braced Excavation in Non-Homogeneous Clay. Arabian Journal of Geosciences 15 (9): 873. doi:10.1007/s12517-022-10161-y.
  • Zhang, R., A. T. C. Goh, Y. Li, L. Hong, and W. Zhang. 2021. Assessment of Apparent Earth Pressure for Braced Excavations in Anisotropic Clay. Acta Geotechnica 16 (5): 1615–1626. doi:10.1007/s11440-020-01129-x.
  • Zhang, R., C. Wu, A. T. C. Goh, T. Böhlke, and W. Zhang. 2021. Estimation of Diaphragm Wall Deflections for Deep Braced Excavation in Anisotropic Clays Using Ensemble Learning. Geoscience Frontiers 12 (1): 365–373. doi:10.1016/j.gsf.2020.03.003.
  • Zhang, W., Y. Li, C. Wu, H. Li, A. T. C. Goh, and H. Liu. 2020. Prediction of Lining Response for Twin Tunnels Constructed in Anisotropic Clay Using Machine Learning Techniques. Underground Space.
  • Zhao, J., B.-S. Jang, and M. Duan. 2017. On Spudcan Deep Penetration Using Eulerian Finite Element in Multi-Layer Sediments: Soil Plug Mechanism. Ships and Offshore Structures 12 (5): 715–721. doi:10.1080/17445302.2016.1212969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.