130
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Shale-gas potential from Cretaceous succession in South Africa’s Orange Basin: Insights from integrated geochemical evaluations

ORCID Icon, , &
Pages 1071-1091 | Received 01 Mar 2022, Accepted 28 Jul 2022, Published online: 22 Sep 2022

References

  • Abdelghany, W. K., A. E. Radwan, M. A. Elkhawaga, D. A. Wood, S. Sen, and A. A. Kassem. 2021. Geomechanical Modeling Using the Depth-of-Damage Approach to Achieve Successful Underbalanced Drilling in the Gulf of Suez Rift Basin. Journal of Petroleum Science and Engineering 202: 108311. doi:10.1016/j.petrol.2020.108311.
  • Adegoke, K. A. 2015. Source Rock Characterisation and 1D Basin Modelling of the Upper Cretaceous Sediments. Kuala Lumpur, Malaysia: Chad (Bornu) Basin, Northeastern Nigeria Jabatan Geologi, Fakulti Sains, Universiti Malaya.
  • Adekola, S. A., and A. Akinlua. 2012. Source Rock Characterization within the Stratigraphic Settings of the Orange Basin. South Africa. Petroleum Science and Technology 30 (6): 545–558. doi:10.1080/10916466.2010.481652.
  • Adekola, S. A., A. Akinlua, and K. Mangelsdorf. 2012. Organic Geochemical Evaluation of Cretaceous Shale Samples from the Orange Basin. South Africa Applied Geochemistry 27 (8): 1633–1642. doi:10.1016/j.apgeochem.2012.03.012.
  • Adekola, S. A., and A. Akinlua. 2013. Petrography and Stable Isotope Geochemistry of Cretaceous Sandstones, Orange Basin, South Africa. Journal of Petroleum Exploration and Production Technology 3 (2): 69–83. doi:10.1007/s13202-013-0050-5.
  • Ardakani, O. H., H. Sanei, A. Ghanizadeh, M. McMechan, F. Ferri, and C. R. Clarkson. 2017. Hydrocarbon Potential and Reservoir Characteristics of Lower Cretaceous Garbutt Formation, Liard Basin Canada. Fuel 209: 274–289. doi:10.1016/j.fuel.2017.07.106.
  • Africa, A. S. 2016. South Africa’s technical readiness to support the shale gas industry. https://research.assaf.org.za/handle/20.500.11911/14
  • Akinlua, A., A. Sigedle, T. Buthelezi, and O. A. Fadipe. 2015. Trace Element Geochemistry of Crude Oils and Condensates from South African Basins. Marine and Petroleum Geology 59: 286–293. doi:10.1016/j.marpetgeo.2014.07.023.
  • Atkinson, D. 2018. Fracking in a Fractured Environment: Shale Gas Mining and Institutional Dynamics in South Africa’s Young Democracy. Extractive Industries and Society-an International Journal, 5 (4): 441–452. doi:10.1016/j.exis.2018.09.013.
  • Barker, C. E., and W. A. Elders. 1981. Vitrinite Reflectance Geothermometry and Apparent Heating Durationin the Cerro Prieto Geothermal-Field. Geothermics 10 (3–4): 207–223. doi:10.1016/0375-6505(81)90005-5.
  • Berge, T. B., F. Aminzadeh, P. de Groot, and T. Oldenziel. 2002. Seismic Inversion Successfully Predicts Reservoir, Porosity, and Gas Content in Ibhubesi Field, Orange Basin, South Africa. The Leading Edge 21 (4): 338–348. doi:10.1190/1.1471595.
  • Bissada, K. K. 1982. Geochemical Constraints on Petroleum Generation and Migration—a Review. Proceedings ASCOPE 81: 69–87. doi:10.1177/0144598793011003-405.
  • Bordenave, M. 1993. Screening Techniques for Source Rock Evaluation. Applied Petroleum Geochemistry 217–278. https://cir.nii.ac.jp/crid/1570572699993218048.
  • Bilgen, S, and I. Sarikaya. 2016. New Horizon in Energy: Shale Gas. Journal of Natural Gas Science and Engineering 35: 637–645. doi:10.1016/j.jngse.2016.09.014.
  • Broad, D. S., E. H. A. Jungslager, I. R. McLachlan, J. Roux and D. van der Spuy. 2012. South Africa's offshore Mesozoic basins. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria : 553–571. doi:10.1016/b978-0-444-56357-6.00014-7.
  • Brown, L. F. 1997. AAPG Studies in Geology No 41 - Sequence Stratigraphy in Offshore South African Divergent Basins; an Atlas on Exploration for Cretaceous Lowstand Traps by Soekor (Pty) Ltd - Reply. Marine and Petroleum Geology 14 (4): 469–470. doi:10.1016/s0264-8172(97)00020-2.
  • Bruner, K. R., and R. A. Smosna. 2011. A Comparative Study of the Mississippian Barnett Shale. Pittsburgh, PA: Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin, US Department of Energy, National Energy Technology Laboratory, DOE/NETL-2011/1478.
  • Caineng, Z., D. Dong, S. Wang, J. Li, X. Li, Y. Wang, D. Li, and K. Cheng. 2010. Geological Characteristics and Resource Potential of Shale Gas in China. Petroleum Exploration and Development 37(6): 641–653. doi:10.1016/S1876-3804(11)60001-3.
  • Caineng Z., D. Dong, Y. Wang, X. Li, J. Huang, S. F. Wang, Q. Z. Guan, C. C. Zhang, H. Y. Wang, H. L. Liu, W. H. Bai, F. Liang, W. Lin, Q. Zhao, D. X. Liu, Z. Yang, P. P. Liang, S. S. Sun, and Z. Qiu. 2015. Shale Gas in China: Characteristics, Challenges and Prospects (I). Petroleum Exploration and Development 42 (6): 753–767. doi:10.1016/s1876-3804(15)30072-0.
  • Chere, N. 2015. Sedimentological and Geochemical Investigations on Borehole Cores of the Lower Ecca Group Black Shales, for Their Gas Potential: Karoo Basin, South Africa. Port Elizabeth, South Africa: Nelson Mandela Metropolitan University 
  • Chere, N., B. Linol, M. De Wit, and H. M. Schulz. 2017. 2017. Lateral and Temporal Variations of Black Shales across the Southern Karoo Basin-Implications for Shale Gas Exploration. South African Journal of Geology 120 (4): 541–564.
  • Cooles, G. P., A. S. Mackenzie, and T. M. Quigley. 1986. Calculation of Petroleum Masses Generated and Expelled from Source Rocks. Organic Geochemistry 10 (1–3): 235–245. doi:10.1016/0146-6380(86)90026-4.
  • Curtis, J. B. 2002. Fractured Shale-Gas Systems. Aapg Bulletin 86 (11): 1921–1938. doi:10.1306/61eeddbe-173e-11d7-8645000102c1865d.
  • Davies, C. P. 1997. Unusual Biomarker Maturation Ratio Changes through the Oil Window, a Consequence of Varied Thermal History. Organic Geochemistry 27 (7–8): 537–560. doi:10.1016/s0146-6380(97)00059-4.
  • Ding, W., C. Li, C. Li, C. Xu, K. Jiu, W. Zeng, and L. Wu. 2012. Fracture Development in Shale and Its Relationship to Gas Accumulation. Geoscience Frontiers 3 (1): 97–105. doi:10.1016/j.gsf.2011.10.001.
  • Dow, W. G. 1977. Kerogen Studies and Geological Interpretations. Journal of Geochemical Exploration 7: 79–99. doi:10.1016/0375-6742(77)90078-4.
  • EIA, U. 2014. Annual Energy Outlook 2014 with projections to 2040, April 2014, A-25, 269. DOE/EIA-0383. https://www.eia.gov/analysis/projection-data.php.
  • EIA, U. 2015. World Shale Resource Assessments. Government. EIA/Analysis/Studies/World Shale Gas, September, 24. https://www.ieee.es/Galerias/fichero/OtrasPublicaciones/Internacional/2015.
  • EIA, U. 2013. Technically Recoverable Shale Oil & Gas Resources: An Assessment of 137 Shale Formations in 41 Countries outside the US. June. http://www.eia.gov/analysis/studies/worldshalegas.
  • Espitalie, J., G. Deroo, and F. Marquis. 1985. La Pyrolyse Rock-Eval et Ses Applications. Revue de L'Institut Français du Pétrole 40 (5): 563–579. doi:10.2516/ogst:1985045.
  • Espitalié, J., G. Deroo, and F. Marquis. 1986. La Pyrolyse Rock-Eval et Ses Applications. Troisième Partie. Revue de L'Institut Français du Pétrole 41 (1): 73–89. doi:10.2516/ogst:1986003.
  • Fatti, J. L., G. C. Smith, P. J. Vail, P. J. Strauss, and P. R. Levitt. 1994. Detection of Gas in Sandstone Reservoirs Using AVO Analysis: A 3-D Seismic Case History Using the Geostack Technique. Geophysics 59 (9): 1362–1376. doi:10.1190/1.1443695.
  • Gentzis, T, and F. Goodarzi. 1994. Reflectance Suppression in Some Cretaceous Coals from Alberta, Canada. Washington, DC: ACS Publications.
  • Gerrard, I, and G. C. Smith. 1982. Post-Paleozoic Succession and Structure of the Southwestern African Continental Margin: Rifted Margins: Field Investigations of Margin Structure and Stratigraphy. In Studies in Continental Margin Geology, Vol. M34, 49–74. AAPG Memoir. https://archives.datapages.com/data/specpubs/history2/data/a110/a110/0001/0000/0049.htm.
  • Goodarzi, F. 1985. Organic Petrology of Hat Creek Coal Deposit No. 1, British Columbia. International Journal of Coal Geology 5 (4): 377–396. doi:10.1016/0166-5162(85)90003-5.
  • Goodarzi, F., O. H. Ardakani, P. K. Pedersen, and H. Sanei. 2015. Canadian Arctic Oil Shale Resources: A Re-Assessment of Potential Ordovician to Carboniferous Oil Shale Deposits. In OTC Arctic Technology Conference. OnePetro. doi:10.4043/25576-MS.
  • Hackley, P. C., and B. J. Cardott. 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology 163: 8–51. doi:10.1016/j.coal.2016.06.010.
  • Hakimi, M. H., A. Ahmed, A. Y. Kahal, O. S. Hersi, H. J. Al Faifi, and S. Qaysi. 2020a. Organic Geochemistry and Basin Modeling of Late Cretaceous Harshiyat Formation in the Onshore and Offshore Basins in Yemen: Implications for Effective Source Rock Potential and Hydrocarbon Generation. Marine and Petroleum Geology 122: 104701. doi:10.1016/j.marpetgeo.2020.104701.
  • Hakimi, M. H., W. H. Abdullah, A. A. Lashin, E. H. Ibrahim, and Y. M. Makeen. 2020b. Hydrocarbon Generation Potential of the Organic-Rich Naifa Formation, Say’un-Masila Rift Basin, Yemen: Insights from Geochemical and Palynofacies Analyses. Natural Resources Research 29 (4): 2687–2715. doi:10.1007/s11053-019-09595-1.
  • Hakimi, M. H., A. M. Al-Matary, O. El-Mahdy, B. A. Hatem, A. Y. Kahal, and A. Lashin. 2020c. Organic Geochemistry Characterization of Late Jurassic Bituminous Shales and Their Organofacies and Oil Generation Potential in the Shabwah Depression, Southeast Sabatayn, Yemen. Journal of Petroleum Science and Engineering 188Article: 106951. doi:10.1016/j.petrol.2020.106951.
  • Hakimi, M. H., A. M. Al-Matary, and O. S. Hersi. 2018. Late Jurassic Bituminous Shales from Marib Oilfields in the Sabatayn Basin (NW Yemen): Geochemical and Petrological Analyses Reveal Oil-Shale Resource. Fuel 232: 530–542. doi:10.1016/j.fuel.2018.05.138.
  • Hartwig, A., Z. Anka, and R. di Primio. 2012. Evidence of a Widespread Paleo-Pockmarked Field in the Orange Basin: An Indication of an Early Eocene Massive Fluid Escape Event Offshore South Africa. Marine Geology 332–334: 222–234. doi:10.1016/j.margeo.2012.07.012.
  • Hazra, B., D. A. Wood, D. Mani, P. K. Singh, and A. K. Singh. 2019. Evaluation of Shale Source Rocks and Reservoirs. Berlin, Germany: Springer. doi: 10.1007/978-3-030-13042-8.
  • Hirsch, K. K., M. Scheck-Wenderoth, J. D. van Wees, G. Kuhlmann, and D. A. Paton. 2010. Tectonic Subsidence History and Thermal Evolution of the Orange Basin. Marine and Petroleum Geology 27 (3): 565–584. doi:10.1016/j.marpetgeo.2009.06.009.
  • Hunt, J. M. 1995. Petroleum Geochemistry and Geology. 2nd ed. xx–743. New York, NY: W. H. Freeman. ISBN 071624413
  • Jarvie, D. M. 2011. Shale Resource Systems for Oil and Gas: Part I—Shale Gas Resource Systems. Part II—Shale Oil Resource Systems. Shale Reservoirs Giant Resources for the 21st Century: AAPG Memoir 97: 1–31. doi:10.1306/13321447M973489.
  • Jarvie, D. M., and L. L. Lundell. 1991. Hydrocarbon generation modeling of naturally and artificially matured Barnett Shale, Fort Worth Basin, Texas: Southwest Regional Geochemistry Meeting, September 8 – 9, 1991, The Woodlands, Texas, 1991, http://www.humble-inc.com/Jarvie_Lundell_1991.pdf.
  • Jarvie, D. M. 2014. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta 12 (4): 307–325. doi:10.1344/GeologicaActa2014.12.4.3.
  • Jarvie, D. M. 2015. Geochemical Assessment of Unconventional Shale Gas Resource Systems. In ed. R. Rezaee, Fundamentals of Gas Shale Reservoirs, Chapter 4, Vol. 3, 47–69. John Wiley & Sons. doi:10.1002/9781119039228.ch3.
  • Jarvie, D. 2012. Shale Resource Systems for Oil and Gas: part I—Shale Gas Resource Systems. Part II—Shale Oil Resource Systems. Shale Reservoirs-Giant Resources for the 21st Century. AAPG Memoir 97: 69–87. doi:10.1306/13321446M973489.
  • Jarvie, D. M., R. J. Hill, T. E. Ruble, and R. M. Pollastro. 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin 91 (4): 475–499. doi:10.1306/12190606068.
  • Jarvie, D. M., R. J. Hill, R. M. Pollastro, D. A. Wavrek, K. A. Bowker, B. L. Claxton, and M. H. Tobey. 2003. Evaluation of Unconventional Natural Gas Prospects: The Barnett Shale Fractured Shale Gas Model (Abs.). 21st International meeting on organic geochemistry, 3–4; Krakow, Poland: Book of Abstracts, Part II, September 8–12, 2003.
  • Jones, R. W. 1984. Comparison of Carbonate and Shale Source Rocks. Aapg Bulletin-American Association of Petroleum Geologists 68 (4): 160–183.
  • Jungslager, E. H. 1999. Petroleum Habitats of the Atlantic Margin of South Africa. Geological Society, London, Special Publications 153 (1): 153–168. doi:10.1144/GSL.SP.1999.153.01.10.
  • Katz, B., and F. Lin. 2014. Lacustrine Basin Unconventional Resource Plays: Key Differences. Marine and Petroleum Geology 56: 255–265. doi:10.1016/j.marpetgeo.2014.02.013.
  • Kent, B. 2003. Recent Development of the Barnett Shale Play, Forth Worth Basin. West Texas Geological Society Bulletin 42 (6): 4–11. http://www.wtgs.org/.
  • Killops, V. J., and S. D. Killops. 2013. Introduction to Organic Geochemistry. Hoboken, NJ: John Wiley & Sons.
  • Kuhlmann, G., S. Adams, C. Campher, D. van der Spuy, R. di Primio, and B. Horsfield. 2010. Passive Margin Evolution and Its Controls on Natural Gas Leakage in the Southern Orange Basin, Blocks 3/4, Offshore South Africa. Marine and Petroleum Geology 27 (4): 973–992. doi:10.1016/j.marpetgeo.2010.01.010.
  • Largeau, C, and J. De Leeuw. 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies: By RV TYSON, 615. Chapman and Hall, London: doi: Pergamon.ISBN 0-412-36350-X.£115.00.
  • Li, Y. X., Z. M. Hu, X. G. Liu, S. S. Gao, X. G. Duan, J. Chang, and J. F. Wu. 2018. Insights into Interactions and Microscopic Behavior of Shale Gas in Organic - Rich Nano - Slits by Molecular Simulation. Journal of Natural Gas Science and Engineering 59: 309–325. doi:10.1016/j.jngse.2018.09.011.
  • Li, Y. J., Y. Y. Feng, H. Liu, L. H. Zhang, and S. X. Zhao. 2013. Geological Characteristics and Resource Potential of Lacustrine Shale Gas in the Sichuan Basin, SW China. Petroleum Exploration and Development 40 (4): 454–460. doi:10.1016/s1876-3804(13)60057-9.
  • Liu, J., Z. L. He, X. W. Liu, Z. Z. Huo, and P. Guo. 2019. Using Frequency-Dependent AVO Inversion to Predict the. “Sweet Spots.” “Of Shale Gas Reservoirs.” Marine and Petroleum Geology 102: 283–291. doi:10.1016/j.marpetgeo.2018.12.039.
  • Magoon, L. B., and W. G. Dow. 1994. The Petroleum System: chapter 1: Part I. Introduction. In The Petroleum System-From Source to Trap, 3–24. https://archives.datapages.com/data/specpubs/methodo2/data/a077/a077/0001/0000/0003.htm.
  • Martinez-Gomez, J., F. Napoles-Rivera, J. M. Ponce-Ortega, and M. M. El-Halwagi. 2017. Optimization of the Production of Syngas from Shale Gas with Economic and Safety Considerations. Applied Thermal Engineering 110: 678–685. doi:10.1016/j.applthermaleng.2016.08.201.
  • Maxwell, S. 2011. Microseismic Hydraulic Fracture Imaging: The Path toward Optimizing Shale Gas Production. The Leading Edge 30 (3): 340–346. doi:10.1190/1.3567266.
  • McMillan, I. K., G. I. Brink, D. S. Broad, and J. J. Maier. 1997. Late Mesozoic Sedimentary Basins off the South Coast of South Africa. Sedimentary Basins of the World, Vol. 3, 319–376. Amsterdam, Netherlands: Elsevier. doi:10.1016/S1874-5997(97)80016-0.
  • Mukhopadhyay, P. K. 1994. Vitrinite Reflectance as Maturity Parameter-Petrographic and Molecular Characterization and Its Applications to Basin Modelling. In eds. P. K. Mukhopadhyay and W. G. Dow, Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations, Vol. 570, 1–24. ACS Symposium Series. ISBN 0-8412-2994-5. WOS: A1994BD02F00001. Washington, DC: American Chemical Society,
  • Mukhopadhyay, P. K., J. A. Wade, and M. A. Kruge. 1995. Organic Facies and Maturation of Jurassic/Cretaceous Rocks, and Possible Oil-Source Rock Correlation Based on Pyrolysis of Asphaltenes, Scotian Basin. Canada. Organic Geochemistry 22 (1): 85–104. doi:10.1016/0146-6380(95)90010-1.
  • Mustafa, A., Z. Tariq, M. Mahmoud, A. E. Radwan, A. Abdulraheem, and M. O. Abouelresh. 2022. Data-Driven Machine Learning Approach to Predict Mineralogy of Organic-Rich Shales: An Example from Qusaiba Shale, Rub’ al Khali Basin, Saudi Arabia. Marine and Petroleum Geology 137: Article 105495. doi:10.1016/j.marpetgeo.2021.105495.
  • Mustapha, K. A. 2016. Petroleum Source Rock Characterization and Petroleum System Analysis of the Neogene Sedimentary Sequences in the Ne Sabah Basin. Kuala Lumpur, Malaysia: Malaysia Department of Geology, Faculty Science, University Malaya].
  • Mustapha, K. A, and W. H. Abdullah. 2013. Petroleum Source Rock Evaluation of the Sebahat and Ganduman Formations, Dent Peninsula, Eastern Sabah, Malaysia. Journal of Asian Earth Sciences 76: 346–355. doi:10.1016/j.jseaes.2012.12.003.
  • Osli, L. N., M. R. Shalaby, and M. Islam. 2018. Characterization of Source Rocks and Depositional Environment, and Hydrocarbon Generation Modelling of the Cretaceous Hoiho Formation, Great South Basin, Newzealand. Petroleum & Coal 60 (2): 255–275. https://www.vurup.sk/petroleum/2018/volume-60/#volume-60-2018-issue-2.
  • Paton, D. A., R. Di Primio, G. Kuhlmann, D. Van Der Spuy, and B. Horsfield. 2007. Insights into the Petroleum System Evolution of the Southern Orange Basin, South Africa. South African Journal of Geology 110 (2–3): 261–274. doi:10.2113/gssajg.110.2-3.261.
  • Peters, K. E. 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. American Association of Petroleum Geologists Bulletin 70 (3): 318–329. doi:10.1306/94885688-1704-11d7-8645000102c1865d.
  • Peters, K. E., and J. M. Moldowan. 1993. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. https://www.osti.gov/biblio/6066248
  • Peters, K. E., and M. R. Cassa. 1994. Applied Source Rock Geochemistry. The Petroleum System - from Source to Trap, 93–120. Tulsa, OK: AAPG Memoir.
  • Peters, K. E. Peters, C. C. Walters, and J. M. Moldowan. 2005. The Biomarker Guide, Vol. 1. Cambridge: Cambridge University Press.
  • Peters, K. E., C. Walters, and M. Moldowan. 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge, NY: Cambridge University Press.
  • Petroleum Agency of South Africa, P. 2003. Petroleum Exploration Information and Opportunities. Brochure Cape Town, South Africa: Petroleum Agency South Africa.
  • Radwan, A. E., D. A. Wood, M. Mahmoud, and Z. Tariq. 2022. Gas Adsorption and Reserve Estimation for Conventional and Unconventional Gas Resources. Sustainable Geoscience for Natural Gas Subsurface Systems, 345–382. Amsterdam, Netherlands: Elsevier.
  • Sandvik, E. I., W. A. Young, and D. J. Curry. 1992. Expulsion from Hydrocarbon Sources: The Role of Organic Absorption. Organic Geochemistry 19 (1–3): 77–87. doi:10.1016/0146-6380(92)90028-v.
  • Sawada, K. 2006. Organic Facies and Geochemical Aspects in Neogene Neritic Sediments of the Takafu Syncline Area of Central Japan: Paleoenvironmental and Sedimentological Reconstructions. Island Arc 15 (4): 517–536. doi:10.1111/j.1440-1738.2006.00546.x.
  • Schmoker, J. W. 1995. Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. In Eds. D. L. Gautier, G. L. Dolton, K. I. Takahashi and K.L. Varnes, National assessment of United States Oil and Gas Resources—Results, Methodology, and Supporting Data: U.S. Geological Survey Digital Data Series, 30. CD-ROM.K.L.K.L.
  • Scholes, B., P. Lochner, G. Schreiner, Luanita Snyman-An der Walt, and M. De Jager. 2016. Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks. Clean Air Journal 26 (2): 6.
  • Shalaby, M. R., M. H. Hakimi, and W. H. Abdullah. 2011. Geochemical Characteristics and Hydrocarbon Generation Modeling of the Jurassic Source Rocks in the Shoushan Basin, North Western Desert, Egypt. Marine and Petroleum Geology 28 (9): 1611–1624. doi:10.1016/j.marpetgeo.2011.07.003.
  • Shalaby, M. R., M. H. Hakimi, and W. H. Abdullah. 2012. Organic Geochemical Characteristics and Interpreted Depositional Environment of the Khatatba Formation, Northern Western Desert. AAPG Bulletin 96 (11): 2019–2036. doi:10.1306/04181211178.
  • Shen, W., X. Li, Y. Xu, Y. Sun, and W. Huang. 2017. Gas Flow Behavior of Nanoscale Pores in Shale Gas Reservoirs. Energies 10 (6): 751. doi:10.3390/en10060751.
  • Shen, W., L. Zheng, C. M. Oldenburg, A. Cihan, J. Wan, and T. K. Tokunaga. 2018. Methane Diffusion and Adsorption in Shale Rocks: A Numerical Study Using the Dusty Gas Model in TOUGH2/EOS7C-ECBM. Transport in Porous Media 123 (3): 521–531. doi:10.1007/s11242-017-0985-y.
  • Sohail, G. M., A. E. Radwan, and M. Mahmoud. 2022. A Review of Pakistani Shales for Shale Gas Exploration and Comparison to North American Shale Plays. Energy Reports 8: 6423–6442. doi:10.1016/j.egyr.2022.04.074.
  • Stainforth, J. G., and J. E. A. Reinders. 1990. Primary Migration of Hydrocarbons by Diffusion through Organic Matter Networks, and Its Effect on Oil and Gas Generation. Organic Geochemistry 16 (1–3): 61–74. doi:10.1016/0146-6380(90)90026-v.
  • Suarez-Ruiz, I., D. Flores, J. G. Mendonca, and P. C. Hackley. 2012. Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. International Journal of Coal Geology 99: 54–112. doi:10.1016/j.coal.2012.02.004.
  • Sweeney, J. J., and A. K. Burnham. 1990. Evaluation of a Simple - Model of Vitrinite Reflectance Based on Chemical - Kinetics. Aapg Bulletin-American Association of Petroleum Geologists 74 (10): 1559–1570. doi:10.1306/0C9B251F-1710-11D7-8645000102C1865D.
  • Taylor, G. H., M. Teichmuller, A. Davis, C. F. K. Diessel, R. Littke, and P. Robert. 1998. Organic Petrology. A new handbook incorporating some revised parts of Stach's Textbook of Coal Petrology. Berlin, Stutgart: Gebruder Borntraeger. https://www.schweizerbart.de/publications/detail/isbn/9783443010362/Taylor_et_al_Organic_Petrology.
  • Taylor, K. G, and J. H. S. Macquaker. 2014. Diagenetic Alterations in a Silt- and Clay-Rich Mudstone Succession: An Example from the Upper Cretaceous Mancos Shale of Utah, USA. Clay Minerals 49 (2): 213–227. doi:10.1180/claymin.2014.049.2.05.
  • Teichmüller, M., G. H. Taylor, and R. Littke. 1998. The Nature of Organic Matter-Macerals and Associated Minerals. Organic Petrology, 175–274. Stuttgart, Germany.
  • Thomas, M. M., and J. A. Clouse. 1990. Primary Migration by Diffusion through Kerogen: I. Model Experiments with Organic-Coated Rocks. Geochimica et Cosmochimica Acta 54 (10): 2775–2779. doi:10.1016/0016-7037(90)90011-9.
  • Tissot, B. P., R. Pelet, and P. H. Ungerer. 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin 71 (12): 1445–1466. doi:10.1306/703C80E7-1707-11D7-8645000102C1865D.
  • Van der Spuy, D. 2003. Aptian Source Rocks in Some South African Cretaceous Basins. Geological Society, London, Special Publications 207 (1): 185–202. doi:10.1144/GSL.SP.2003.207.10.
  • Van der Spuy, D., N. A. Jikelo, T. Ziegler, and M. Bowyer. 2003. Deepwater 2D Data Reveal Orange Basin Objectives off Western South Africa. Oil & Gas Journal 101 (14): 44–44. https://elibrary.ru/item.asp?id=6280076.
  • Van Huyssteen, E., C. Green, P. Paige-Green, M. Oranje, S. Berrisford, and D. McKelly. 2016. Impacts on Integrated Spatial and Infrastructure Planning. In eds. R. Scholes, P. Lochner, G. Schreiner, L. Snyman-Van der Walt, and M. de Jager, Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks 18–68. http://researchspace.csir.co.za/dspace/handle/10204/9074.
  • Vengosh, A., N. Warner, R. Jackson, and T. Darrah. 2013. The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States. Proceedings of the fourteenth international symposium on water-rock interaction, wri 14. 14th International Symposium on Water-Rock Interaction (WRI), Avignon, France. Procedia Earth and Planetary Science 7 (2013): 863–866. doi:10.1016/j.proeps.2013.03.213.
  • Visser, D. J. L., G. Brandl, L. P. Chevallier, D. I. Cole, C. H. de Beer, P. G. Grease, F. J. Hartzer, R. S. Hill, N. Keyser, F. G. le Roux, J. E. J. Martini, H. F. G. Moen, L. W. Schurrmann, J. N. Theron, R. J. Thomas, C. J. Van Vuuren. 1998. The Geotectonic Evolution of South Africa and Offshore Areas. Council for Geoscience, Geological Survey of South Africa. Apparent First Edition, 319 p. https://biblio.co.nz/book/geotectonic-evolution-south-africa-offshore-areas/d/205662913.
  • Wang, Q., and L. Wang. 2016. Comparative Study and Analysis of the Development of Shale Gas between China and the USA. International Journal of Geosciences 07 (02): 200–209. doi:10.4236/ijg.2016.72016.
  • Wang, H., X. Q. Wang, X. Jin, and D. P. Cao. 2016. Molecular Dynamics Simulation of Diffusion of Shale Oils in Montmorillonite. The Journal of Physical Chemistry C 120 (16): 8986–8991. doi:10.1021/acs.jpcc.6b01660.
  • Welte, D., and P. Tissot. 1984. Petroleum Formation and Occurrence. A New Approach to Oil and Gas Exploration. Berlin, Germany: Springer. doi:10.1007/978-3-642-96446-6.
  • Wenzhi, Z., J. Ailin, W. Yunsheng, W. Junlei, and Z. Hanqing. 2020. Progress in Shale Gas Exploration in China and Prospects for Future Development. China Petroleum Exploration 25 (1): 31. http://www.cped.cn/EN/Y2020/V25/I1/31.
  • Wood, G. 1996. Palynological Techniques-Processing and Microscopy. In Palynology: Principles and Application. American Association of Stratigraphic Palynologists Foundation, eds. J. Jasonius, and D. C. McGregor, Vol. 1, 29–50. American Association of Stratigraphic Palynologists Foundation. https://cir.nii.ac.jp/crid/1572543024138151168.
  • Xingang, Z., K. Jiaoli, and L. Bei. 2013. Focus on the Development of Shale Gas in China—Based on SWOT Analysis. Renewable and Sustainable Energy Reviews 21: 603–613. doi:10.1016/j.rser.2012.12.044.
  • Yelwa, N. A., K. A. Mustapha, M. Opuwari, and A. A. Aziz. 2022. Biomarkers, Stable Carbon Isotope, and Trace Element Distribution of Source Rocks in the Orange Basin, South Africa: Implications for Paleoenvironmental Reconstruction, Provenance, and Tectonic Setting. Journal of Petroleum Exploration and Production Technology 12: 307–339. doi:10.1007/s13202-021-01317-9.
  • Zhang, J., M. Shi, D. Wang, Z. Tong, X. Hou, J. Niu, X. Li, Z. Li, P. Zhang, and Y. Huang. 2022. Fields and Directions for Shale Gas Exploration in China. Natural Gas Industry B 9 (1): 20–32.
  • Zhang, H., X. Zeng, Z. Zhao, Z. Zhai, and D. Cao. 2017. Adsorption and Selectivity of CH4/CO2 in Functional Group Rich Organic Shales. Journal of Natural Gas Science and Engineering 39: 82–89. doi:10.1016/j.jngse.2017.01.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.