147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A laboratory investigation on the effect of crushability on the interface parameters of Hormoz carbonated soil

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1199-1215 | Received 04 Jun 2022, Accepted 09 Aug 2022, Published online: 03 Nov 2022

References

  • Afshar, T., M. M. Disfani, A. Arulrajah, G. A. Narsilio, and S. Emam. 2017. Impact of Particle Shape on Breakage of Recycled Construction and Demolition Aggregates. Powder Technology 308: 1–12. doi:10.1016/j.powtec.2016.11.043.
  • Alimohammadi, H., K. Dastjerdi, and M. Yaghin. 2020. The Study of Progressive Collapse in Dual Systems. Civil and Environmental Engineering 16 (1): 79–85. doi:10.2478/cee-2020-0009.
  • API. 2011. 2GEO Geotechnical and Foundation Design Considerations. Washington, DC: American Petroleum Institute.
  • ASTM 3080. 2011. ASTM D 3080 Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. West Conshohocken, PA: ASTM.
  • Ata, A., T. N. Salem, and R. Hassan. 2018. Geotechnical Characterization of the Calcareous Sand in Northern Coast of Egypt. Ain Shams Engineering Journal 9 (4): 3381–3390. doi:10.1016/j.asej.2018.03.008.
  • Brandes, H. G. 2011. Engineering Properties of Carbonate Marine Sediments. In International Conference on Offshore Mechanics and Arctic Engineering. Vol. 44397, pp. 893–899.
  • Cavarretta, I., C. O'sullivan, and M. R. Coop. 2017. The Relevance of Roundness to the Crushing Strength of Granular Materials. Géotechnique 67 (4): 301–312. doi:10.1680/jgeot.15.P.226.
  • Celestino, T., and J. Mitchell. 1983. Behavior of carbonate sands for foundations of offshore structures. Proceedings, Brazil offshore 83: 85–102.
  • Chai, W., Z. L. Long, and D. M. Kuang. 2019. Effect of Shear Rate on Shear Strength and Deformation Characteristics of Calcareous Sand in Direct Shear Test. Rock and Soil Mechanics 40 (S1): 359–366.
  • Chaney, R. C., S. M. Slonim, and S. S. Slonim. 1982. Determination of Calcium Carbonate Content in Soils. In Geotechnical Properties, Behavior, and Performance of Calcareous Soils. West Conshohocken, PA: ASTM International.
  • Chávez, C., and E. E. Alonso. 2003. A Constitutive Model for Crushed Granular Aggregates Which Includes Suction Effects. Soils and Foundations 43 (4): 215–227. doi:10.3208/sandf.43.4_215.
  • Chen, H. Y. 2005. Study on the Inner Pore in Calcareous Sand. MA thesis, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
  • Coop, M. R. 1990. The Mechanics of Uncemented Carbonate Sands. Géotechnique 40 (4): 607–626. doi:10.1680/geot.1990.40.4.607.
  • Coop, M., K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. Particle Breakage during Shearing of a Carbonate Sand. Geotechnique 54 (3): 157–163. doi:10.1680/geot.2004.54.3.157.
  • Datta, M., S. K. Gulhati, and G. V. Rao. 1979. April. Crushing of Calcareous Sands during Shear. In Offshore Technology Conference. OnePetro. doi:10.4043/3525-MS.
  • Datta, M., S. K. Gulhati, and G. V. Rao. 1982. Engineering Behavior of Carbonate Soils of India and Some Observations on Classification of Such Soils. In Geotechnical Properties, Behavior, and Performance of Calcareous Soils. West Conshohocken, PA: ASTM International.
  • Dennis, N. D., and R. E. Olson. 1983. Axial capacity of steel pipe piles in sand. Paper presented at the Geotechnical Practice in Offshore Engineering.
  • Duncan, J. M, and C.-Y. Chang. 1970. Nonlinear Analysis of Stress and Strain in Soils. Journal of Soil Mechanics & Foundations Div 96 (5): 1629–1653.
  • Duncan, J. M., S. G. Wright, and T. L. Brandon. 2014. Soil Strength and Slope Stability. Hoboken, NJ: John Wiley & Sons.
  • Duttine, A., F. Tatsuoka, W. Kongkitkul, and D. Hirakawa. 2008. Viscous Behaviour of Unbound Granular Materials in Direct Shear. Soils and Foundations 48 (3): 297–318. doi:10.3208/sandf.48.297.
  • Einav, I. 2007. Breakage Mechanics. Part II—Modelling Granular Materials. Journal of the Mechanics and Physics of Solids.55 (6): 1298–1320. doi:10.1016/j.jmps.2006.11.004.
  • Enomoto, T., S. Kawabe, F. Tatsuoka, H. Di Benedetto, T. Hayashi, and A. Duttine. 2009. Effects of Particle Characteristics on the Viscous Properties of Granular Materials in Shear. Soils and Foundations 49 (1): 25–49. doi:10.3208/sandf.49.25.
  • Faizan, A. A., and O. Kırtel. 2021. Non-Linear Soil-Structure Interaction Analysis of Railway Bridge Subjected to Earthquake Ground Motions considering Different Types of Soil. Arabian Journal of Geosciences 14 (6): 1–11. doi:10.1007/s12517-021-06834-9.
  • Frossard, E., W. Hu, C. Dano, and P. Y. Hicher. 2012. Rockfill Shear Strength Evaluation: A Rational Method Based on Size Effects. Géotechnique 62 (5): 415–427. doi:10.1680/geot.10.P.079.
  • Golightly, C. R., and J. F. Nauroy. 1990. May. End Bearing Capacity of Piles in Calcareous Sands. In Offshore Technology Conference. OnePetro. doi:10.4043/6239-MS.
  • Goodarzi, S., and H. Shahnazari. 2019. Strength Enhancement of Geotextile-Reinforced Carbonate Sand. Geotextiles and Geomembranes 47 (2): 128–139. doi:10.1016/j.geotexmem.2018.12.004.
  • Gupta, A. K. 2016. Effects of Particle Size and Confining Pressure on Breakage Factor of Rockfill Materials Using Medium Triaxial Test. Journal of Rock Mechanics and Geotechnical Engineering 8 (3): 378–388. doi:10.1016/j.jrmge.2015.12.005.
  • Haeri, H., V. Sarfarazi, Z. Zhu, M. F. Marji, and A. Masoumi. 2019. Investigation of Shear Behavior of Soil-Concrete Interface. Smart Structures and Systems 23 (1): 81.
  • Hardin, B. O. 1985. Crushing of Soil Particles. Journal of Geotechnical Engineering 111 (10): 1177–1192. doi:10.1061/(ASCE)0733-9410(1985)111:10(1177).
  • Isaev, O. N., and R. F. Sharafutdinov. 2020. Soil Shear Strength at the Structure Interface. Soil Mechanics & Foundation Engineering 57 (2): 139–146.
  • Isbuga, V. 2020. Modeling of Pile-Soil-Pile Interaction in Laterally Loaded Pile Groups Embedded in Linear Elastic Soil Layers. Arabian Journal of Geosciences 13 (9): 1–17. doi:10.1007/s12517-020-5229-8.
  • Janipour, A. K., M. Mousivand, and M. Bayat. 2022. Study of Interface Shear Strength between Sand and Concrete. Arabian Journal of Geosciences 15 (2): 1–9. doi:10.1007/s12517-021-09394-0.
  • Karimpour-Fard, M., R. Rezvani, and S. G. Selakjani. 2021. Crushability and Compressibility of Carbonate and Siliceous Sands in the One-Dimensional Oedometer Test. Arabian Journal of Geosciences 14 (23): 1–11. doi:10.1007/s12517-021-08751-3.
  • Karimpour-Fard, M., S. Zarbakhash, G. R. Soufi, A. Ahadi, and B. P. Naveen. 2020. Design, Fabrication and Calibration of a Tall Pneumatic Oedometer Apparatus. Measurement 163: 107985. doi:10.1016/j.measurement.2020.107985.
  • Lackenby, J., B. Indraratna, G. McDowell, and D. Christie. 2007. Effect of Confining Pressure on Ballast Degradation and Deformation under Cyclic Triaxial Loading. Géotechnique 57 (6): 527–536. doi:10.1680/geot.2007.57.6.527.
  • Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. Significance of Particle Crushing in Granular Materials. Journal of Geotechnical Engineering 122 (4): 309–316. doi:10.1061/(ASCE)0733-9410(1996)122:4(309).
  • Le Tirant, P. 1992. Design Guides for Offshore Structures: Offshore Pile Design.
  • Lee, J., T. S. Yun, D. Lee, and J. Lee. 2013. Assessment of K0 Correlation to Strength for Granular Materials. Soils and Foundations 53 (4): 584–595. doi:10.1016/j.sandf.2013.06.009.
  • Lee, K. L., and I. Farhoomand. 1967. Compressibility and Crushing of Granular Soil in Anisotropic Triaxial Compression. Canadian Geotechnical Journal 4 (1): 68–86. doi:10.1139/t67-012.
  • Lees, G. 1964. A New Method for Determining the Angularity of Particles. Sedimentology 3 (1): 2–21. doi:10.1111/j.1365-3091.1964.tb00271.x.
  • Liu, M., and Y. Gao. 2017. Constitutive Modeling of Coarse-Grained Materials Incorporating the Effect of Particle Breakage on Critical State Behavior in a Framework of Generalized Plasticity. International Journal of Geomechanics 17 (5): 04016113. doi:10.1061/(ASCE)GM.1943-5622.0000759.
  • Liu, T., H. Chen, R. M. Buckley, V. S. Quinteros, and R. J. Jardine. 2019. Characterisation of Sand-Steel Interface Shearing Behaviour for the Interpretation of Driven Pile Behaviour in Sands. E3S Web of Conferences 92: 13001. doi:10.1051/e3sconf/20199213001.
  • Man, S., and R. C.-K. Wong. 2017. Compression and Crushing Behavior of Ceramic Proppants and Sand under High Stresses. Journal of Petroleum Science and Engineering 158: 268–283. doi:10.1016/j.petrol.2017.08.052.
  • Marsal, R. J. 1967. Large Scale Testing of Rockfill Materials. Journal of the Soil Mechanics and Foundations Division 93 (2): 27–43. doi:10.1061/JSFEAQ.0000958.
  • Miao, G., and D. Airey. 2013. Breakage and Ultimate States for a Carbonate Sand. Géotechnique 63 (14): 1221–1229. doi:10.1680/geot.12.P.111.
  • Miura, N., and O. Sukeo. 1979. Particle-Crushing of a Decomposed Granite Soil under Shear Stresses. Soils and Foundations 19 (3): 1–14. doi:10.3208/sandf1972.19.3_1.
  • Miura, N., and T. Yamamoto. 1976. Particle-Crushing Properties of Sands under High Stresses. Technology Reports of the Yamaguchi University 1 (4): 439–447.
  • Miura, S., K. Yagi, and T. Asonuma. 2003. Deformation-Strength Evaluation of Crushable Volcanic Soils by Laboratory and in-Situ Testing. Soils and Foundations 43 (4): 47–57. doi:10.3208/sandf.43.4_47.
  • Motallebiyan, A., M. Bayat, and B. Nadi. 2020. Analyzing the Effects of Soil-Structure Interactions on the Static Response of Onshore Wind Turbine Foundations Using Finite Element Method. Civil Engineering Infrastructures Journal 53 (1): 189–205.
  • Muir Wood, D., and K. Maeda. 2008. Changing Grading of Soil: Effect on Critical States. Acta Geotechnica 3 (1): 3–14.
  • Mun, W., and J. S. McCartney. 2017. Roles of Particle Breakage and Drainage in the Isotropic Compression of Sand to High Pressures. Journal of Geotechnical and Geoenvironmental Engineering 143 (10): 04017071. doi:10.1061/(ASCE)GT.1943-5606.0001770.
  • Nauroy, J. F., F. Brucy, and P. Le Tirant. 1985. Static and cyclic load tests on a drilled and grouted pile in calcareous sand.
  • Nauroy, J. F., F. Brucy, and P. Le Tirant. 1988. Skin Friction of Piles in Calcareous Sands. In Proc. lst Int. Conf. on Calcareous Sediments, Perth, Australia, Vol.1, 239–244.
  • Nauroy, J. F., F. Brucy, P. Le Tirant, and J. P. Kervadec. 1986. Design and installation of piles in calcareous formations. Paper presented at the Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Nantes, France.
  • Nauroy, J. F., and P. Le Tirant. 1983. Model Tests of Piles in Carbonate Sands. Paper presented at the Proceedings of ASCE Specialty Conference on Geotechnical Practice in Offshore Engineering.
  • Noorany, I. 1985. Side friction of piles in calcareous sands. Paper presented at the International conference on soil mechanics and foundation engineering. 11.
  • Oldecop, L. A., and E. E. Alonso. 2001. A Model for Rockfill Compressibility. Géotechnique 51 (2): 127–139. doi:10.1680/geot.2001.51.2.127.
  • Ovalle, C., C. Dano, P. Y. Hicher, and M. Cisternas. 2015. Experimental Framework for Evaluating the Mechanical Behavior of Dry and Wet Crushable Granular Materials Based on the Particle Breakage Ratio. Canadian Geotechnical Journal 52 (5): 587–598. doi:10.1139/cgj-2014-0079.
  • Potyondy, J. G. 1961. Skin Friction between Various Soils and Construction Materials. Geotechnique 11 (4): 339–353. doi:10.1680/geot.1961.11.4.339.
  • Poulos, H. G., and F. K. Chan. 1986. Model Pile Skin Friction in Calcareous Sand. Geotechnical Engineering 17 (2): 235–257.
  • Procter, D., and C. Merrifield. 2005. A Carbonate Sand Particle Crushing under Monotonic Loading. International Journal of Civil Engineering 3 (3): 140–151.
  • Ramadan, M. I., and M. Meguid. 2020. Behavior of Cantilever Secant Pile Wall Supporting Excavation in Sandy Soil considering Pile-Pile Interaction. Arabian Journal of Geosciences 13 (12): 1–13. doi:10.1007/s12517-020-05483-8.
  • Rui, S., L. Wang, Z. Guo, X. Cheng, and B. Wu. 2021. Monotonic Behavior of Interface Shear between Carbonate Sands and Steel. Acta Geotechnica 16 (1): 167–187. doi:10.1007/s11440-020-00987-9.
  • Sadek, M., M. Hussein, F. H. Chehade, and A. Arab. 2020. Influence of Soil–Structure Interaction on the Fundamental Frequency of Shear Wall Structures. Arabian Journal of Geosciences 13 (17): 1–8. doi:10.1007/s12517-020-05872-z.
  • Samanta, M., P. Punetha, and M. Sharma. 2018. Influence of Surface Texture on Sand–Steel Interface Strength Response. Géotechnique Letters 8 (1): 40–48. doi:10.1680/jgele.17.00135.
  • Shahnazari, H., and R. Rezvani. 2013. Effective Parameters for the Particle Breakage of Calcareous Sands: An Experimental Study. Engineering Geology 159: 98–105. doi:10.1016/j.enggeo.2013.03.005.
  • Shahnazari, H., M. A. Tutunchian, R. Rezvani, and F. Valizadeh. 2013. Evolutionary-Based Approaches for Determining the Deviatoric Stress of Calcareous Sands. Computers & Geosciences 50: 84–94. doi:10.1016/j.cageo.2012.07.006.
  • Shahnazari, H., Y. Jafarian, M. A. Tutunchian, and R. Rezvani. 2016. Undrained Cyclic and Monotonic Behavior of Hormuz Calcareous Sand Using Hollow Cylinder Simple Shear Tests. International Journal of Civil Engineering 14 (4): 209–219. doi:10.1007/s40999-016-0021-6.
  • Shariatmadari, N., M. Norouzi, A. S. Javadi, and M. Alizadeh. 2020. Geotechnical Behaviour of the Carbonate Sand-Granulated Tire Mixture.
  • Shen, Y., Y. Zhu, H. Liu, A. Li, and H. Ge. 2018. Macro-Meso Effects of Gradation and Particle Morphology on the Compressibility Characteristics of Calcareous Sand. Bulletin of Engineering Geology and the Environment 77 (3): 1047–1055. doi:10.1007/s10064-017-1157-6.
  • Tatsuoka, F. 2005. Effects of Viscous Properties and Ageing on the Stress-Strain Behaviour of Geomaterials. In Geomechanics: Testing, Modeling, and Simulation (pp. 1–60). doi:10.1061/40797(172)1.
  • Uesugi, M., H. Kishida, and Y. Tsubakihara. 1988. Behavior of Sand Particles in Sand-Steel Friction. Soils and Foundations 28 (1): 107–118. doi:10.3208/sandf1972.28.107.
  • Varadarajan, A., K. G. Sharma, K. Venkatachalam, and A. K. Gupta. 2003. Testing and Modeling Two Rockfill Materials. Journal of Geotechnical and Geoenvironmental Engineering 129 (3): 206–218. doi:10.1061/(ASCE)1090-0241(2003)129:3(206).
  • Wang, X., X. Z. Wang, C. Q. Zhu, and Q. S. Meng. 2019. Shear Tests of Interfaces between Calcareous Sand and Steel. Marine Georesources & Geotechnology 37 (9): 1095–1104. doi:10.1080/1064119X.2018.1529845.
  • Wood, D. M., and K. Maeda. 2008. Changing Grading of Soil: effect on Critical States. Acta Geotechnica 3 (1): 3–14. doi:10.1007/s11440-007-0041-0.
  • Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019. Particle Breakage and Energy Dissipation of Carbonate Sands under Quasi-Static and Dynamic Compression. Acta Geotechnica 14 (6): 1741–1755. doi:10.1007/s11440-019-00790-1.
  • Xiao-yan, Z., C. A. I. Yan-yan, W. Zhen-bo, and J. Yun-qian. 2018. Fractal Breakage and Particle Shape Analysis for Coral Sand Under High-Pressure and One-Dimensional Creep Conditions. Rock and Soil Mechanics 39 (5): 1573–1580.
  • Xu, L.-J., X.-z. Wang, R. Wang, C.-q. Zhu, and X.-p. Liu. 2022. Physical and Mechanical Properties of Calcareous Soils: A Review. Marine Georesources & Geotechnology 40 (6): 751–766.
  • Yang, Z. X., R. J. Jardine, B. T. Zhu, P. Foray, and C. D. H. C. Tsuha. 2010. Sand Grain Crushing and Interface Shearing during Displacement Pile Installation in Sand. Géotechnique 60 (6): 469–482. doi:10.1680/geot.2010.60.6.469.
  • Zhang, X., and B. A. Baudet. 2013. Particle Breakage in Gap-Graded Soil. Géotechnique Letters 3 (2): 72–77. doi:10.1680/geolett.13.00022.
  • Zhao, C., Y. Wu, C. Zhao, Q. Zhang, F. Liu, and F. Liu. 2019. Pile Side Resistance in Sands for the Unloading Effect and Modulus Degradation. Materiales de Construcción 69 (334): 185. doi:10.3989/mc.2019.03718.
  • Zheng, J., H. He, and H. Alimohammadi. 2021. Three-Dimensional Wadell Roundness for Particle Angularity Characterization of Granular Soils. Acta Geotechnica 16 (1): 133–149. doi:10.1007/s11440-020-01004-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.