181
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Reduction of dynamic shear modulus of saturated marine sandy silt under complex stress conditions

, , &
Pages 1288-1298 | Received 09 Jun 2022, Accepted 22 Aug 2022, Published online: 31 Oct 2022

References

  • Anastasiadis, A., K. Pitilakis, K. Senetakis, and A. Souli. 2011. Dynamic response of sandy and gravelly soils: Effect of grain size characteristics on G-γ-D curves. Proceedings of the 5th International Conference on Earthquake Geotechnical Engineering, Santiago, Chile.
  • ASTM. 2011. Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. ASTM D5311. West Conshohocken, PA: ASTM.
  • ASTM. 2013. Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Trial Apparatus. ASTM D3999/D3999m. West Conshohocken, PA: ASTM.
  • Chen, Guoxing, Qi Wu, Zhenglong Zhou, Weijia Ma, Weiyun Chen, Sara Khoshnevisan, and Jun Yang. 2020. Undrained Anisotropy and Cyclic Resistance of Saturated Silt Subjected to Various Patterns of Principal Stress Rotation. Géotechnique 70 (4): 317–331. doi:10.1680/jgeot.18.P.180.
  • Chen, G. X., Z. L. Zhou, Z. L. H. Pan, H. T. Sun, T. X. J., and Li, X. J. 2016. The Influence of Undrained Cyclic Loading Patterns and Consolidation States on the Deformation Features of Saturated Fine Sand over a Wide Strain Range. Engineering Geology 204: 77–93. doi:10.1016/j.enggeo.2016.02.008.
  • Chen, G. X., Z. L. Zhou, T. Sun, Q. Wu, L. Y. Xu, S. Khoshnevisan, and D. S. Ling. 2019. Shear Modulus and Damping Ratio of Sand–Gravel Mixtures over a Wide Strain Range. Journal of Earthquake Engineering 23 (8): 1407–1440. doi:10.1080/13632469.2017.1387200.
  • Darendeli, M. B. 2001. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves. PhD Thesis, University of Texas at Austin.
  • Dong, W. Q., X. Q. Hu, Y. Zhang, and H. T. Fu. 2020. Dynamic Characteristics of Marine Soft Clay under Variable Phase Difference and Initial Static Shear Stress. Marine Georesources & Geotechnology 38 (7): 770–785. doi:10.1080/1064119X.2019.1622159.
  • Hardin, B. O., and V. P. Drnevich. 1972. Shear Modulus and Damping in Soils. Journal of the Soil Mechanics and Foundations Division 98 (7): 667–692. doi:10.1061/JSFEAQ.0001760.
  • Hashash, Y. M. A., and D. Park. 2001. Non-Linear One-Dimensional Seismic Ground Motion Propagation in the Mississippi Embayment. Engineering Geology 62 (1–3): 185–206. doi:10.1016/S0013-7952(01)00061-8.
  • Hashash, Y., C. Phillips, and D. R. Groholski. 2010. Recent Advances in Non-Linear Site Response Analysis. Fifth International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics, San Diego, California.
  • Hight, D. W., M. J. SyMes, and A. Gens. 1983. The Development of a New Hollow Cylinder Apparatus for Investigating the Effects of Principal Stress Rotation in Soils. Géotechnique 33 (4): 355–383. doi:10.1680/geot.1983.33.4.355.
  • Huang, A. B., W. J. Chang, B. An, H. H. Hsu, and H. Y. J. Huang. 2015. A Mist Pluviation Method for Reconstituting Silty Sand Specimens. Engineering Geology 188: 1–9. doi:10.1016/j.enggeo.2015.01.015.
  • Huang, Bo, Xingyao Chen, and Yu Zhao. 2015. A New Index for Evaluating Liquefaction Resistance of Soil under Combined Cyclic Shear Stresses. Engineering Geology 199: 125–139. doi:10.1016/j.enggeo.2015.10.012.
  • Ishihara, K., and I. Towhata. 1983. Sand Response to Cyclic Rotation of Principal Stress Directions as Induced by Wave Loads. Soils and Foundations 23 (4): 11–26. doi:10.3208/sandf1972.23.4_11.
  • Javdanian, H., and Y. Jafarian. 2018. Dynamic Shear Stiffness and Damping Ratio of Marine Calcareous and Siliceous Sands. Geo-Marine Letters 38 (4): 315–322. doi:10.1007/s00367-018-0535-9.
  • Joseph, S. I., R. Golesorkhi, and H. B. Seed. 1988. Dynamic Moduli and Damping Ratios for Cohesive Soils. Berkeley: Earthquake Engineering Research Center, University of California.
  • Kagawa, T. 1992. Moduli and Damping Factors of Soft Marine Clays. Journal of Geotechnical Engineering 118 (9): 1360–1375. doi:10.1061/(ASCE)0733-9410(1992)118:9(1360).
  • Kondner, R. L. 1963. Hyperbolic Stress-Strain Response: Cohesive Soils. Journal of the Soil Mechanics and Foundations Division 89 (1): 115–143. doi:10.1061/JSFEAQ.0000479.
  • Leng, Jian, Guan-lin Ye, Bin Ye, and Dong-Sheng Jeng. 2017. Laboratory Test and Empirical Model for Shear Modulus Degradation of Soft Marine Clays. Ocean Engineering 146: 101–114. doi:10.1016/j.oceaneng.2017.09.057.
  • Li, Yuying, Ping Li, and Sheng Zhu. 2022. The Study on Dynamic Shear Modulus and Damping Ratio of Marine Soils Based on Dynamic Triaxial Test. Marine Georesources & Geotechnology 40 (4): 473–486. doi:10.1080/1064119X.2021.1908463.
  • Liu, Q. F., H. Y. Zhuang, Q. Wu, K. Zhao, and G. X. Chen. 2022. Experimental Study on Dynamic Modulus and Damping Ratio of Rubber–Sand Mixtures over a Wide Strain Range. Journal of Earthquake and Tsunami 16 (02): 2140006. doi:10.1142/S1793431121400066.
  • Ma, W. J., Y. Qin, K. Zhao, and G. X. Chen. 2022. Comparisons on Liquefaction Behavior of Saturated Coral Sand and Quartz Sand under Principal Stress Rotation. Marine Georesources & Geotechnology 40 (2): 1–13. doi:10.1080/1064119X.2021.1882627.
  • Menq, F. 2003. Dynamic Properties of Sandy and Gravelly Soils. PhD Thesis, University of Texas at Austin.
  • Oztoprak, S., and M. D. Bolton. 2013. Stiffness of Sands through a Laboratory Test Database. Géotechnique 63 (1): 54–70. doi:10.1680/geot.10.P.078.
  • Prasanna, R., and S. Sivathayalan. 2022. Liquefaction of Sands Subjected to Principal Stress Rotation Caused by Generalized Seismic Loading. Canadian Geotechnical Journal 59 (8): 1427–1442. doi:10.1139/cgj-2021-0035.
  • Rollins, K. M., M. D. Evans, N. B. DIehl, and W. D. Daily III. 1998. Shear Modulus and Damping Relationships for Gravels. Journal of Geotechnical and Geoenvironmental Engineering 124 (5): 396–405. doi:10.1061/(ASCE)1090-0241(1998)124:5(396).
  • Rollins, K. M., M. Singh, and J. Roy. 2020. Simplified Equations for Shear-Modulus Degradation and Damping of Gravels. Journal of Geotechnical and Geoenvironmental Engineering 146 (9): 04020076. doi:10.1061/(ASCE)GT.1943-5606.0002300.
  • Sun, J., and X. M. Yuan. 2010. Effect of Consolidation Ratio of Cohesive Soils on Dynamic Shear Modulus. Rock and Soil Mechanics 31 (5): 1457–1462.
  • Seed, H. 1970. Soil Moduli and Damping Factors for Dynamic Response Analyses. EERC 70-10. California: Earthquake Engineering Research Center, University of California Berkeley.
  • Senetakis, K. 2011. Dynamic Properties of Granular Soils and Mixtures of Typical Sands and Gravels with Recycled Synthetic Materials. Greece: Aristotle University of ThessalonikiDepartment of Civil Engineering.
  • Senetakis, K., A. Anastasiadis, and K. Pitilakis. 2013. Normalized Shear Modulus Reduction and Damping Ratio Curves of Quartz Sand and Rhyolitic Crushed Rock. Soils and Foundations 53 (6): 879–893. doi:10.1016/j.sandf.2013.10.007.
  • Sze, H. Y., and J. Yang. 2014. Failure Modes of Sand in Undrained Cyclic Loading: Impact of Sample Preparation. Journal of Geotechnical and Geoenvironmental Engineering 140 (1): 152–169. doi:10.1061/(ASCE)GT.1943-5606.0000971.
  • Toyota, H., and S. Takada. 2021. Settlement Assessment of Sand Subjected to Cyclic Stress Related to a Load Moving over a Surface Using Hollow Cylindrical Torsional Shear Apparatus. Transportation Geotechnics 29 (3): 100580. doi:10.1016/j.trgeo.2021.100580.
  • Vucetic, M., and R. Dobry. 1991. Effect of Soil Plasticity on Cyclic Response. Journal of Geotechnical Engineering 117 (1): 89–107. doi:10.1061/(ASCE)0733-9410(1991)117:1(89).
  • Wichtmann, T., and T. Triantafyllidis. 2009. Influence of the Grain-Size Distribution Curve of Quartz Sand on the Small Strain Shear Modulus Gmax. Journal of Geotechnical and Geoenvironmental Engineering 135 (10): 1404–1418. doi:10.1061/(ASCE)GT.1943-5606.0000096.
  • Wichtmann, T., and T. Triantafyllidis. 2013. Effect of Uniformity Coefficient on G/Gmax and Damping Ratio of Uniform to Well Graded Quartz Sands. Journal of Geotechnical and Geoenvironmental Engineering 139 (1): 59–72. doi:10.1061/(ASCE)GT.1943-5606.0000735.
  • Wichtmann, T., M. A. N. Hernández, and T. Triantafyllidis. 2015. On the Influence of a Non-Cohesive Fines Content on Small Strain Stiffness, Modulus Degradation and Damping of Quartz Sand. Soil Dynamics and Earthquake Engineering 69 (2): 103–114. doi:10.1016/j.soildyn.2014.10.017.
  • Wu, Q., W. J. Ma, Q. F. Liu, K. Zhao, and G. X. Chen. 2021. Shear Modulus and Damping Ratio of Rubber-Sand Mixtures with a Wide Range of Rubber Content. Materials Today Communication 27 (2): 102341. doi:10.1016/j.mtcomm.2021.102341.
  • Wu, T., Y. Cai, L. Guo, D. Ling, and J. Wang. 2017. Influence of Shear Stress Level on Deformation Behaviour of Undisturbed Soft Clay under Traffic Loading. Engineering Geology 228: 61–70. doi:10.1016/j.enggeo.2017.06.013.
  • Yang, W. B., Q. Wu, and G. X. Chen. 2019. Research on Prediction Method of Dynamic Shear Modulus of Undisturbed Soil at the Mouth of the Yangtze River. Rock and Soil Mechanics 40 (10): 3889–3896.
  • Zhao, K., Q. Z. Wang, H. Y. Zhuang, Z. Y. Li, and G. X. Chen. 2022. A Fully Coupled Flow Deformation Model for Seismic Site Response Analyses of Liquefiable Marine Sediments. Ocean Engineering 251: 111144. doi:10.1016/j.oceaneng.2022.111144.
  • Zhou, X. Z., A. W. Stuedlein, Y. M. Chen, Z. Zhang, and H. L. Liu. 2020. Cyclic Response of Loose Anisotropically Consolidated Calcareous Sand under Progressive Wave–Induced Elliptical Stress Paths. Journal of Geotechnical and Geoenvironmental Engineering 146 (12): 04020143. doi:10.1061/(ASCE)GT.1943-5606.0002422.
  • Zhuang, H. Y., R. Wang, G. X. Chen, Y. Miao, and K. Zhao. 2018. Shear Modulus Reduction of Saturated Sand under Large Liquefaction-Induced Deformation in Cyclic Torsional Shear Tests. Engineering Geology 240: 110–122. doi:10.1016/j.enggeo.2018.04.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.