108
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Undrained deformation behavior of marine clay under two-way cyclic loading

, ORCID Icon, , , &
Pages 465-474 | Received 22 Nov 2022, Accepted 31 Mar 2023, Published online: 12 Apr 2023

References

  • Ansal, A. M., and A. Erken. 1989. Undrained Behavior of Clay under Cyclic Shear Stresses. Journal of Geotechnical Engineering 115 (7): 968–983. doi:10.1061/(ASCE)0733-9410(1989)115:7(968).
  • Cai, Y. Q., Y. Chen, Z. Cao, and C. Ren. 2018. A Combined Method to Predict the Long-Term Settlements of Roads on Soft Soil under Cyclic Traffic Loadings. Acta Geotechnica 13 (5): 1215–1226. doi:10.1007/s11440-017-0616-3.
  • Cai, Y. Q., L. Guo, R. J. Jardine, Z. X. Yang, and J. Wang. 2017. Stress-Strain Response of Soft Clay to Traffic Loading. Géotechnique 67 (5): 446–451. doi:10.1680/jgeot.15.P.224.
  • Cai, Y. Q., T. Wu, L. Guo, and J. Wang. 2018. Stiffness Degradation and Plastic Strain Accumulation of Clay under Cyclic Load with Principal Stress Rotation and Deviatoric Stress Variation. Journal of Geotechnical and Geoenvironmental Engineering 144 (5): 04018021. doi:10.1061/(ASCE)GT.1943-5606.0001854.
  • Chai, J.-C., and N. Miura. 2002. Traffic-Load-Induced Permanent Deformation of Road on Soft Subsoil. Journal of Geotechnical and Geoenvironmental Engineering 128 (11): 907–916. doi:10.1061/(ASCE)1090-0241(2002)128:11(907).
  • Cui, X., N. Zhang, J. Zhang, and Z. Gao. 2014. In Situ Tests Simulating Traffic-Load-Induced Settlement of Alluvial Silt Subsoil. Soil Dynamics and Earthquake Engineering 58 (3): 10–20. doi:10.1016/j.soildyn.2013.11.010.
  • Guo, L., Y. Cai, R. J. Jardine, Z. Yang, and J. Wang. 2018. Undrained Behavior of Intact Soft Clay under Cyclic Paths That Match Vehicle Loading Conditions. Canadian Geotechnical Journal 55 (1): 90–106. doi:10.1139/cgj-2016-0636.
  • Guo, L., H. Jin, J. Wang, and L. Shi. 2020a. Undrained Monotonic Shear Behavior of Marine Soft Clay after Long-Term Cyclic Loading. Marine Georesources & Geotechnology 38 (7): 854–866. doi:10.1080/1064119X.2019.1636906.
  • Guo, L., L. Liu, J. Wang, H. Jin, and Y. Fang. 2020b. Long Term Cyclic Behavior of Saturated Soft Clay under Different Drainage Conditions. Soil Dynamics and Earthquake Engineering 139: 106362. doi:10.1016/j.soildyn.2020.106362.
  • Guo, L., J. Wang, Y. Q. Cai, H. L. Liu, Y. F. Gao, and H. L. Sun. 2013. Undrained Deformation Behavior of Saturated Soft Clay under Long-Term Cyclic Loading. Soil Dynamics and Earthquake Engineering 50: 28–37. doi:10.1016/j.soildyn.2013.01.029.
  • Gu, C., J. Wang, Y. Q. Cai, Z. X. Yang, and Y. F. Gao. 2012. Undrained Cyclic Triaxial Behavior of Saturated Clays under Variable Confining Pressure. Soil Dynamics and Earthquake Engineering 40: 118–128. doi:10.1016/j.soildyn.2012.03.011.
  • Gu, C., Y. Wang, Y. Cui, Y. Cai, and J. Wang. 2019. One-Way Cyclic Behavior of Saturated Clay in 3D Stress State. Journal of Geotechnical and Geoenvironmental Engineering 145 (10): 04019077. doi:10.1061/(ASCE)GT.1943-5606.0002137.
  • Hong, Z.-S., X. Bian, Y.-J. Cui, Y.-F. Gao, and L.-L. Zeng. 2013. Effect of Initial Water Content on Undrained Shear Behaviour of Reconstituted Clays. Géotechnique 63 (6): 441–450. doi:10.1680/geot.11.P.114.
  • Jin, H., L. Guo, H. L. Sun, L. Shi, and Y. Q. Cai. 2022. Undrained Cyclic Shear Strength and Stiffness Degradation of Overconsolidated Soft Marine Clay in Simple Shear Tests. Ocean Engineering 262: 112270. doi:10.1016/j.oceaneng.2022.112270.
  • Law, K. T., Y. L. Cao, and G. N. He. 1990. An Energy Approach for Assessing Seismic Liquefaction Potential. Canadian Geotechnical Journal 27 (3): 320–329. doi:10.1139/t90–043.
  • Lekarp, F., U. Isacsson, and A. Dawson. 2000. State of the Art. II: permanent Strain Response of Unbound Aggregates. Journal of Transportation Engineering 126 (1): 76–83. doi:10.1061/(ASCE)0733-947X(2000)126:1(76).
  • Li, L. L., H. B. Dan, and L. Z. Wang. 2011. Undrained Behavior of Natural Marine Clay under Cyclic Loading. Ocean Engineering 38 (16): 1792–1805. doi:10.1016/j.oceaneng.2011.09.004.
  • Li, D., and E. T. Selig. 1996. Cumulative Plastic Deformation for Fine-Grained Subgrade Soils. Journal of Geotechnical Engineering 122 (12): 1006–1013. doi:10.1061/(ASCE)0733-9410(1996)122:12(1006).
  • Liu, Z., J. Xue, and G. Mei. 2021. The Impact of Stress Disturbance on Undrained Cyclic Behaviour of a Kaolin Clay and Settlement of Tunnels under Cyclic Loading. Acta Geotechnica 16 (12): 3947–3961. doi:10.1007/s11440-021-01363-x.
  • Liu, Z., J. Xue, and M. Yaghoubi. 2021. The Effects of Unloading on Undrained Deformation of a Kaolin Clay under Cyclic Loading. Soil Dynamics and Earthquake Engineering 140 (1): 106434. doi:10.1016/j.soildyn.2020.106434.
  • Moses, G. G., S. N. Rao, and P. N. Rao. 2003. Undrained Strength Behaviour of a Cemented Marine Clay under Monotonic and Cyclic Loading. Ocean Engineering 30 (14): 1765–1789. doi:10.1016/S0029-8018(03)00018-0.
  • Pan, K., and Z. X. Yang. 2020. Evaluation of the Liquefaction Potential of Sand under Random Loading Conditions: equivalent Approach versus Energy-Based Method. Journal of Earthquake Engineering 24 (1): 59–83. doi:10.1080/13632469.2017.1398693.
  • Pan, K., Z. H. Yuan, C. F. Zhao, J. H. Tong, and Z. X. Yang. 2022. Undrained Shear and Stiffness Degradation of Intact Marine Clay under Monotonic and Cyclic Loading. Engineering Geology 297 (2): 106502. doi:10.1016/j.enggeo.2021.106502.
  • Qian, J.-G., Y.-G. Wang, Z.-Y. Yin, and M.-S. Huang. 2016. Experimental Identification of Plastic Shakedown Behavior of Saturated Clay Subjected to Traffic Loading with Principal Stress Rotation. Engineering Geology 214 (11): 29–42. doi:10.1016/j.enggeo.2016.09.012.
  • Ren, X.-W., Q. Xu, J. Teng, N. Zhao, and L. Lv. 2018. A Novel Model for the Cumulative Plastic Strain of Soft Marine Clay under Long-Term Low Cyclic Loads. Ocean Engineering 149 (2): 194–204. doi:10.1016/j.oceaneng.2017.12.028.
  • Sharp, R., and J. Booker. 1984. Shakedown of Pavements under Moving Surface Loads. Journal of Transportation Engineering 110 (1): 1–14. doi:10.1061/(ASCE)0733-947X(1984)110:1(1).
  • Tang, L., H. Chen, H. Sang, S. Zhang, and J. Zhang. 2015. Determination of Traffic-Load-Influenced Depths in Clayey Subsoil Based on the Shakedown Concept. Soil Dynamics and Earthquake Engineering 77 (10): 182–191. doi:10.1016/j.soildyn.2015.05.009.
  • Tong, J., T. Wu, L. Guo, Z. Yuan, and H. Jin. 2022. Long-Term Cyclic Behavior of Soft Clay under Different Variable Confining Pressures and Partially Drained Conditions. Transportation Geotechnics 33 (3): 100723. doi:10.1016/j.trgeo.2022.100723.
  • Wang, Y., Y. Gao, L. Guo, Y. Cai, B. Li, Y. Qiu, and A. H. Mahfouz. 2017. Cyclic Response of Natural Soft Marine Clay under Principal Stress Rotation as Induced by Wave Loads. Ocean Engineering 129 (1): 191–202. doi:10.1016/j.oceaneng.2016.11.031.
  • Wang, J., L. Guo, Y. Cai, C. Xu, and C. Gu. 2013. Strain and Pore Pressure Development on Soft Marine Clay in Triaxial Tests with a Large Number of Cycles. Ocean Engineering 74: 125–132. doi:10.1016/j.oceaneng.2013.10.005.
  • Wang, C., K. Yao, W. Liu, Z. Fu, Y. Yu, and L. Shi. 2022. Accumulative Responses of Soft Clayey Seabed: A Case Study from the Eastern Coast of China. Marine Georesources & Geotechnology: 1–14. doi:10.1080/1064119X.2022.2119453.
  • Wei, X., G. Wang, and R. Wu. 2017. Prediction of Traffic Loading–Induced Settlement of Low-Embankment Road on Soft Subsoil. International Journal of Geomechanics 17 (2): 06016016. doi:10.1061/(ASCE)GM.1943-5622.0000719.
  • Werkmeister, S., A. R. Dawson, and F. Wellner. 2005. Permanent Deformation Behaviour of Granular Materials. Road Materials and Pavement Design 6 (1): 31–51. doi:10.1080/14680629.2005.9689998.
  • Wichtmann, T., and T. Triantafyllidis. 2018. Monotonic and Cyclic Tests on Kaolin: A Database for the Development, Calibration and Verification of Constitutive Models for Cohesive Soils with Focus to Cyclic Loading. Acta Geotechnica 13 (5): 1103–1128. doi:10.1007/s11440-017-0588-3.
  • Wu, T., Y. Cai, L. Guo, D. Ling, and J. Wang. 2017. Influence of Shear Stress Level on Cyclic Deformation Behaviour of Intact Wenzhou Soft Clay under Traffic Loading. Engineering Geology 228: 61–70. doi:10.1016/j.enggeo.2017.06.013.
  • Wu, T., H. Jin, L. Guo, H. Sun, J. Tong, Y. Jiang, and P. Wei. 2022. Predicting Method on Settlement of Soft Subgrade Soil Caused by Traffic Loading Involving Principal Stress Rotation and Loading Frequency. Soil Dynamics and Earthquake Engineering 152 (1): 107023. doi:10.1016/j.soildyn.2021.107023.
  • Yang, Z. X., and K. Pan. 2018. Energy-Based Approach to Quantify Cyclic Resistance and Pore Pressure Generation in Anisotropically Consolidated Sand. Journal of Materials in Civil Engineering 30 (9): 04018203. doi:10.1061/(ASCE)MT.1943-5533.0002419.
  • Zhou, J., and X. Gong. 2001. Strain Degradation of Saturated Clay under Cyclic Loading. Canadian Geotechnical Journal 38 (1): 208–212. doi:10.1139/t00-062.
  • Zhuang, H., J. Wang, and Z. Gao. 2022. Anisotropic and Noncoaxial Behavior of Soft Marine Clay under Stress Path considering the Variation of Principal Stress Direction. International Journal of Geomechanics 22 (6): 04022062. doi:10.1061/(ASCE)GM.1943-5622.0002390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.