79
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical studies on dynamic impedances of symmetrically–distributed inclined piles with an elevated pile cap

, ORCID Icon, , &
Pages 694-706 | Received 10 Nov 2022, Accepted 09 May 2023, Published online: 08 Jun 2023

References

  • Alamo, G. M., A. E. Martinez-Castro, L. A. Padron, J. J. Aznarez, R. Gallego, and O. Maeso. 2017. “A Proposal for Normalized Impedance Functions of Inclined Piles in Non-Homogeneous Media.” Procedia engineering, 199: 86–91. doi: 10.1016/j.proeng.2017.09.160.
  • Basack, S., M. Karami, and M. Karakouzian. 2022. “Pile-Soil Interaction under Cyclic Lateral Load in Loose Sand: Experimental and Numerical Evaluations.” Soil Dynamics and Earthquake Engineering 162: 107439. doi:10.1016/j.soildyn.2022.107439.
  • Basack, S., and S. Nimbalkar. 2018. “Measured and Predicted Response of Pile Groups in Soft Clay Subjected to Cyclic Lateral Loading.” International Journal of Geomechanics 18 (7): 04018073. doi:10.1061/(ASCE)GM.1943-5622.0001188.
  • Capatti, M. C., F. Dezi, S. Carbonari, and F. Gara. 2020. “Dynamic Performance of a Full-Scale Micropile Group: Relevance of Nonlinear Behaviour of the Soil Adjacent to Micropiles.” Soil Dynamics and Earthquake Engineering 128: 105858. doi:10.1016/j.soildyn.2019.105858.
  • Chen, S. L., L. Z. Chen, and E. Pan. 2007. “Three-Dimensional Time-Harmonic Green’s Functions of Saturated Soil under Buried Loading.” Soil Dynamics and Earthquake Engineering 27 (5): 448–462. doi:10.1016/j.soildyn.2006.09.006.
  • Chen, X., and J. Liu. 2022. “Three-Dimensional Scour Hole Model and Scour Effects on the Ultimate Capacity of Lateral Loaded Rigid Piles.” Applied Ocean Research 121: 103115. doi:10.1016/j.apor.2022.103115.
  • Daher, R., and J. M. Abbas. 2021. “The Behavior of Pile Group under Inclined Static Load with Different Angle of Inclination in Sandy Soil.” Diyala Journal of Engineering Sciences 14 (2): 52–61. doi:10.24237/djes.2021.14205.
  • de Silva, F., C. Amendola, D. Pitilakis, and F. Silvestri. 2023. “Prediction of Foundation Stiffness and Damping Ratio under Horizontal Translation and Rocking Motion.” Soil Dynamics and Earthquake Engineering 166: 107735. doi:10.1016/j.soildyn.2022.107735.
  • Finn, W. D. L., and J. Dowling. 2016. “Modelling Effects of Pile Diameter.” Canadian Geotechnical Journal 53 (1): 173–178. doi:10.1139/cgj-2015-0119.
  • Gerolymos, N., A. Giannakou, I. Anastasopoulos, and G. Gazetas. 2008. “Evidence of Beneficial Role of Inclined Piles: Observations and Summary of Numerical Analyses.” Bulletin of Earthquake Engineering 6 (4): 705–722. doi:10.1007/s10518-008-9085-2.
  • Ghazavi, M., P. Ravanshenas, and M. H. El Naggar. 2013. “Interaction between Inclined Pile Groups Subjected to Harmonic Vibrations.” Soils and Foundations 53 (6): 789–803. doi:10.1016/j.sandf.2013.08.009.
  • Giannakou, A., N. Gerolymos, G. Gazetas, T. Tazoh, and I. Anastasopoulos. 2010. “Seismic Behavior of Batter Piles: Elastic Response.” Journal of Geotechnical and Geoenvironmental Engineering 136 (9): 1187–1199. doi:10.1061/(ASCE)GT.1943-5606.0000337.
  • González, Francisco, Sandro Carbonari, Luis A. Padrón, Michele Morici, Juan J. Aznárez, Francesca Dezi, Orlando Maeso, and Graziano Leoni. 2020. “Benefits of Batter Pile Foundations in Earthquake Resistant Design of Bridges.” Engineering Structures 203: 109873. doi:10.1016/j.engstruct.2019.109873.
  • Gupta, B. K., and D. Basu. 2016. “Analysis of Laterally Loaded Rigid Monopiles and Poles in Multilayered Linearly Varying Soil.” Computers and Geotechnics 72: 114–125. doi:10.1016/j.compgeo.2015.11.008.
  • He, R., A. M. Kaynia, J. Zheng, and J. Zhang. 2022. “Effect of Gap and Scour on Dynamic Behavior of Monopiles and Offshore Wind Structures.” Ocean Engineering 243: 110336. doi:10.1016/j.oceaneng.2021.110336.
  • He, B., Y. Lai, L. Wang, Y. Hong, and R. Zhu. 2019. “Scour Effects on the Lateral Behavior of a Large-Diameter Monopile in Soft Clay: Role of Stress History.” Journal of Marine Science and Engineering 7 (6): 170. doi:10.3390/jmse7060170.
  • He, R., and L. Wang. 2016. “Elastic Rocking Vibration of an Offshore Gravity Base Foundation.” Applied Ocean Research 55: 48–58. doi:10.1016/j.apor.2015.11.006.
  • He, R., J. Zhang, and J. Zheng. 2022. “Vertical Dynamic Interaction Factors for Offshore Thin-Walled Pipe Piles.” Computers and Geotechnics 145: 104656. doi:10.1016/j.compgeo.2022.104656.
  • Houlsby, G. T., R. B. Kelly, J. Huxtable, and B. W. Byrne. 2006. “Field Trials of Suction Caissons in Sand for Offshore Wind Turbine Foundations.” Géotechnique 56 (1): 3–10. doi:10.1680/geot.2006.56.1.3.
  • Iovino, M., R. M. S. Maiorano, L. de Sanctis, and S. Aversa. 2021. “Failure Envelopes of Pile Groups under Inclined and Eccentric Load.” Géotechnique Letters 11 (4): 247–253. doi:10.1680/jgele.21.00059.
  • Jalbi, S., and S. Bhattacharya. 2018. “Closed Form Solution for the First Natural Frequency of Offshore Wind Turbine Jackets Supported on Multiple Foundations Incorporating Soil-Structure Interaction.” Soil Dynamics and Earthquake Engineering 113: 593–613. doi:10.1016/j.soildyn.2018.06.011.
  • Kaynia, A. M., and E. Kausel. 1991. “Dynamics of Piles and Pile Groups in Layered Soil Media.” Soil Dynamics and Earthquake Engineering 10 (8): 386–401. doi:10.1016/0267-7261(91)90053-3.
  • Leblanc, C., G. T. Houlsby, and B. W. Byrne. 2010. “Response of Stiff Piles in Sand to Long-Term Cyclic Lateral Loading.” Géotechnique 60 (2): 79–90. doi:10.1680/geot.7.00196.
  • Liang, F., H. Zhang, and M. Huang. 2017. “Influence of Flood-Induced Scour on Dynamic Impedances of Pile Groups considering the Stress History of Undrained Soft Clay.” Soil Dynamics and Earthquake Engineering 96: 76–88. doi:10.1016/j.soildyn.2017.02.009.
  • Lian, J., P. Wang, C. Le, X. Dong, X. Yang, Q. Jiang, Y. Yang, and J. Jiang. 2019. “Reliability Analysis on One-Step Overall Transportation of Composite Bucket Foundation for Offshore Wind Turbine.” Energies 13 (1): 23. doi:10.3390/en13010023.
  • Li, Q., A. Askarinejad, and K. Gavin. 2021. “Impact of Scour on Lateral Resistance of Wind Turbine Monopiles: An Experimental Study.” Canadian Geotechnical Journal 58 (11): 1770–1782. doi:10.1139/cgj-2020-0219.
  • Li, F., J. Han, and C. Lin. 2013. “Effect of Scour on the Behavior of Laterally Loaded Single Piles in Marine Clay.” Marine Georesources & Geotechnology 31 (3): 271–289. doi:10.1080/1064119X.2012.676157.
  • Liu, W., Y. Zhang, K. Yao, L. Shi, and D. Ni. 2022. “Theoretical Investigation on Characteristics of Field Reactions of Saturated Ground Subjected to Vibrations of Inclined Pile Groups.” European Journal of Environmental and Civil Engineering: 1–27. doi:10.1080/19648189.2022.2153927.
  • Medina, C., L. A. Padron, J. J. Aznarez, and O. Maeso. 2015. “Influence of Pile Inclination Angle on the Dynamic Properties and Seismic Response of Piled Structures.” Soil Dynamics and Earthquake Engineering 69: 196–206. doi:10.1016/j.soildyn.2014.10.027.
  • Nimbalkar, S., and S. Basack. 2023. “Pile Group in Clay under Cyclic Lateral Loading with Emphasis on Bending Moment: Numerical Modelling.” Marine Georesources & Geotechnology 41 (3): 269–284. doi:10.1080/1064119X.2022.2150103.
  • Padron, L. A., J. J. Aznarez, and O. Maeso. 2008. “Dynamic Analysis of Piled Foundations in Stratified Soils by a BEM-FEM Model.” Soil Dynamics and Earthquake Engineering 28 (5): 333–346. doi:10.1016/j.soildyn.2007.07.005.
  • Padron, L. A., J. J. Aznarez, O. Maeso, and A. Santana. 2010. “Dynamic Stiffness of Deep Foundations with Inclined Piles.” Earthquake Engineering & Structural Dynamics 39 (12): 1343–1367. doi:10.1002/eqe.1000.
  • Pang, A. L. J., M. Skote, S. Y. Lim, J. Gullman-Strand, and N. Morgan. 2016. “A Numerical Approach for Determining Equilibrium Scour Depth around a Mono-Pile Due to Steady Currents.” Applied Ocean Research 57: 114–124. doi:10.1016/j.apor.2016.02.010.
  • Prendergast, L. J., K. Gavin, and P. Doherty. 2015. “An Investigation into the Effect of Scour on the Natural Frequency of an Offshore Wind Turbine.” Ocean Engineering 101: 1–11. doi:10.1016/j.oceaneng.2015.04.017.
  • Prendergast, L. J., D. Hester, K. Gavin, and J. J. O’Sullivan. 2013. “An Investigation of the Changes in the Natural Frequency of a Pile Affected by Scour.” Journal of Sound and Vibration 332 (25): 6685–6702. doi:10.1016/j.jsv.2013.08.020.
  • Rajeswari, J. S., and R. Sarkar. 2021. “A Three-Dimensional Investigation on Performance of Batter Pile Groups in Laterally Spreading Ground.” Soil Dynamics and Earthquake Engineering 141: 106508. doi:10.1016/j.soildyn.2020.106508.
  • Shi, W., H. Park, C. Chung, J. Baek, Y. Kim, and C. Kim. 2013. “Load Analysis and Comparison of Different Jacket Foundations.” Renewable Energy 54: 201–210. doi:10.1016/j.renene.2012.08.008.
  • Shi, L., C. Xu, Y. Cai, and X. Geng. 2014. “Dynamic Impedances and Free-Field Vibration Analysis of Pile Groups in Saturated Ground.” Journal of Sound and Vibration 333 (16): 3709–3731. doi:10.1016/j.jsv.2014.04.016.
  • Turan, A., D. Hafez, and M. H. El Naggar. 2013. “The Performance of Inclined Secant Micro-Pile Walls as Active Vibration Barriers.” Soil Dynamics and Earthquake Engineering 55: 225–232. doi:10.1016/j.soildyn.2013.09.003.
  • van der Tempel, J., and D.-P. Molenaar. 2002. “Wind Turbine Structural Dynamics – a Review of the Principles for Modern Power Generation, Onshore and Offshore.” Wind Engineering 26 (4): 211–222. doi:10.1260/030952402321039412.
  • Wang, Z., R. Hu, H. Leng, H. Liu, Y. Bai, and W. Lu. 2020. “Deformation Analysis of Large Diameter Monopiles of Offshore Wind Turbines under Scour.” Applied Sciences 10 (21): 7579. doi:10.3390/app10217579.
  • Wang, X., S. Li, and J. Li. 2022. “Effect of Pile Arrangement on Lateral Response of Group-Pile Foundation for Offshore Wind Turbines in Sand.” Applied Ocean Research 124: 103194. doi:10.1016/j.apor.2022.103194.
  • Wang, X., C. Ma, and J. Li. 2022. “Seismic Response of Suction Bucket Foundation for Offshore Wind Turbines: A Parametric Study.” Ocean Engineering 257: 111570. doi:10.1016/j.oceaneng.2022.111570.
  • Wang, T., Z. Zhang, J. Zhang, Z. Chen, J. Xian, and L. Zhang. 2022. “Performance-Based Assessment of the Monopile Foundation of Offshore Wind Turbines.” Ocean Engineering 266: 113083. doi:10.1016/j.oceaneng.2022.113083.
  • Wei, S., Z. Liang, L. Cui, H. Zhai, and D. Jeng. 2022. “Numerical Study of Seabed Response and Liquefaction around a Jacket Support Offshore Wind Turbine Foundation under Combined Wave and Current Loading.” Water Science and Engineering 15 (1): 78–88. doi:10.1016/j.wse.2021.12.007.
  • Zhang, H., F. Liang, and H. Zheng. 2021. “Dynamic Impedance of Monopiles for Offshore Wind Turbines considering Scour-Hole Dimensions.” Applied Ocean Research 107: 102493. doi:10.1016/j.apor.2020.102493.
  • Zhang, R., Y. Tang, J. Hu, S. Ruan, and C. Chen. 2013. “Dynamic Response in Frequency and Time Domains of a Floating Foundation for Offshore Wind Turbines.” Ocean Engineering 60: 115–123. doi:10.1016/j.oceaneng.2012.12.015.
  • Zhang, J., and H. Wang. 2022. “Development of Offshore Wind Power and Foundation Technology for Offshore Wind Turbines in China.” Ocean Engineering 266: 113256. doi:10.1016/j.oceaneng.2022.113256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.