94
Views
0
CrossRef citations to date
0
Altmetric
Technical Note

Applicability of the concept of equivalent intergranular void ratio to sand-plastic fines mixtures below threshold fines content

, &
Pages 1119-1123 | Received 08 Mar 2023, Accepted 09 Jul 2023, Published online: 21 Aug 2023

References

  • Been, K., and M. G. Jefferies. 1985. A State Parameter of Sands. Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99
  • Bouckovalas, G., K. Andrianopoulos, and A. Papadimitriou. 2003. A Critical State Interpretation for the Cyclic Liquefaction Resistance of Silty Sands. Soil Dynamics and Earthquake Engineering 23 (2): 115–125. https://doi.org/10.1016/S0267-7261(02)00156-2
  • Chang, C., and Y. Deng. 2019. Revisiting the Concept of Inter-Granular Void Ratio in View of Particle Packing Theory. Géotechnique Letters 9 (2): 121–129. https://doi.org/10.1680/jgele.18.00175
  • Dash, H. K., T. G. Sitharam, and B. A. Baudet. 2010. Influence of Non-Plastic Fines on the Response of a Silty Sand to Cyclic Loading. Soils and Foundations 50 (5): 695–704. https://doi.org/10.3208/sandf.50.695
  • David Suits, L., T. C. Sheahan, A. B. Cerato, and A. J. Lutenegger. 2002. Determination of Surface Area of Fine-Grained Soils by the Ethylene Glycol Monoethyl Ether (EGME) Method. Geotechnical Testing Journal 25 (3): 10035. https://doi.org/10.1520/GTJ11087J
  • Goudarzy, M., M. M. Rahman, D. König, and T. Schanz. 2016. Influence of Non-Plastic Fines Content on Maximum Shear Modulus of Granular Materials. Soils and Foundations 56 (6): 973–983. https://doi.org/10.1016/j.sandf.2016.11.003
  • Goudarzy, M., D. Sarkar, W. Lieske, and T. Wichtmann. 2022. Influence of Plastic Fines Content on the Liquefaction Susceptibility of Sands: Monotonic Loading. Acta Geotechnica 17 (5): 1719–1737. https://doi.org/10.1007/s11440-021-01283-w
  • Goudarzy, M., D. Sarkar, W. Lieske, and T. Wichtmann. 2023. Reply to Discussion of Influence of Plastic Fines Content on the Liquefaction Susceptibility of Sands: Monotonic Loading. Acta Geotechnica 18 (5): 2867–2868. https://doi.org/10.1007/s11440-023-01829-0
  • Goudarzy, M., D. Sarkar, and T. Wichtmann. 2022. Influence of Plastic Fines Content on the Liquefaction Susceptibility of Sands: Cyclic Loading. Acta Geotechnica 17 (11): 4977–4988. https://doi.org/10.1007/s11440-022-01633-2
  • Goudarzy, M. 2015. Micro and Macro Mechanical Assessment of Small and Intermediate Strain Properties of Granular Material. PhD thesis, Ruhr-Universität Bochum, Germany.
  • Karim, M. E., and M. J. Alam. 2016. Undrained Monotonic and Cyclic Response of Sand-Silt Mixtures. International Journal of Geotechnical Engineering 10 (3): 223–235. https://doi.org/10.1179/1939787915Y.0000000023
  • Lashkari, A. 2014. Recommendations for Extension and Re-Calibration of an Existing Sand Constitutive Model Taking into account Varying Non-Plastic Fines Content. Soil Dynamics and Earthquake Engineering 61-62: 212–238. https://doi.org/10.1016/j.soildyn.2014.02.012
  • Lashkari, A., P. T. Shourijeh, S. S. S. Khorasani, N. Irani, and M. M. Rahman. 2022. Effects of over-Consolidation History on Flow Instability of Clean and Silty Sands. Acta Geotechnica 17 (11): 4989–5007. https://doi.org/10.1007/s11440-022-01502-y
  • Li, X. S., and Y. Wang. 1998. Linear Representation of Steady-State Line for Sand. Journal of Geotechnical and Geoenvironmental Engineering 124 (12): 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)
  • Meier, L. P., and G. Kahr. 1999. Determination of the Cation Exchange Capacity (CEC) of Clay Minerals Using the Complexes of Copper(II) Ion with Triethylenetetramine and Tetraethylenepentamine. Clays and Clay Minerals 47 (3): 386–388. https://doi.org/10.1346/CCMN.1999.0470315
  • Ni, Q., T. S. Tan, G. R. Dasari, and D. W. Hight. 2004. Contribution of Fines to the Compressive Strength of Mixed Soils. Géotechnique 54 (9): 561–569. https://doi.org/10.1680/geot.2004.54.9.561
  • Pan, K., G. Y. Zhou, Z. X. Yang, and Y. Q. Cai. 2020. Comparison of Cyclic Liquefaction Behavior of Clean and Silty Sands considering Static Shear Effect. Soil Dynamics and Earthquake Engineering 139: 106338. https://doi.org/10.1016/j.soildyn.2020.106338
  • Porcino, D. D., T. Triantafyllidis, T. Wichtmann, and G. Tomasello. 2021. Application of Critical State Approach to Liquefaction Resistance of Sand–Silt Mixtures under Cyclic Simple Shear Loading. Journal of Geotechnical and Geoenvironmental Engineering 147 (3): 04020177. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0002470
  • Rahman, M. M., and S. R. Lo. 2008. The Prediction of Equivalent Granular Steady State Line of Loose Sand with Fines. Geomechanics and Geoengineering 3 (3): 179–190. https://doi.org/10.1080/17486020802206867
  • Rahman, M. M., S. R. Lo, and M. A. L. Baki. 2011. Equivalent Granular State Parameter and Undrained Behavior of Sand–Fines Mixtures. Acta Geotechnica 6 (4): 183–194. https://doi.org/10.1007/s11440-011-0145-4
  • Rahman, M. M., S. R. Lo, and C. T. Gnanendran. 2008. On Equivalent Granular Void Ratio and Steady State Behaviour of Loose Sand with Fines. Canadian Geotechnical Journal 45 (10): 1439–1456. https://doi.org/10.1139/T08-064
  • Sanati, H. H., H. Katebi, and M. H. Bonab. 2022. Mechanics of the Instability of Sand and Non-Plastic Silt Mixture Using Equivalent Intergranular Void Ratio. Arabian Journal of Geosciences 15 (15): 1360. https://doi.org/10.1007/s12517-022-10634-0
  • Sarkar, D., D. König, and M. Goudarzy. 2019. The Influence of Particle Characteristics on the Index Void Ratios Ingranular Materials. Particuology 46: 1–13. https://doi.org/10.1016/j.partic.2018.09.010
  • Schofield, A., and C. P. Wroth. 1968. Critical State Soil Mechanics, 1–310. New York: McGraw-Hill.
  • Tamang, B., U. Kim, J. Jin, S. Lee, and S. Kim. 2023. Undrained Monotonic Shear Behavior of Sand Mixed with a Small Amount of Fines Content. Acta Geotechnica 18 (6): 2915–2927. https://doi.org/10.1007/s11440-022-01776-2
  • Thevanayagam, S. 1998. Effect of Fines and Confining Stress on Undrained Shear Strength of Silty Sands. Journal of Geotechnical and Geoenvironmental Engineering 124 (6): 479–491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)
  • Thevanayagam, S., T. Shenthan, S. Mohan, and J. Liang. 2002. Undrained Fragility of Clean Sands, Silty Sands and Sandy Silts. Journal of Geotechnical and Geoenvironmental Engineering 128 (10): 849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  • Xenaki, V. C., and G. A. Athanasopoulos. 2003. Liquefaction Resistance of Sand–Silt Mixtures: An Experimental Investigation of the Effect of Fines. Soil Dynamics and Earthquake Engineering 23 (3): 1–12. https://doi.org/10.1016/S0267-7261(02)00210-5
  • Xu, L., F. Cai, J. Zhang, D. Pan, Q. Wu, and G. Chen. 2021. Evaluation of Grain Size and Content of Nonplastic Fines on Undrained Behavior of Sandy Soils. Marine Georesources & Geotechnology 39 (10): 1215–1229. https://doi.org/10.1080/1064119X.2020.1821847
  • Xu, Ling-Yu, Jing-Zhe Zhang, Fei Cai, Wei-Yun Chen, and Ying-Ying Xue. 2019. Constitutive Modeling the Undrained Behaviors of Sands with Non-Plastic Fines under Monotonic and Cyclic Loading. Soil Dynamics and Earthquake Engineering 123: 413–424. https://doi.org/10.1016/j.soildyn.2019.05.021
  • Yang, S. L., R. Sandven, and L. Grande. 2006. Steady-State Lines of Sand-Silt Mixtures. Canadian Geotechnical Journal 43 (11): 1213–1219. https://doi.org/10.1139/t06-069
  • Yazdani, E., A. Nguyen, and M. T. Evans. 2022. Shear-Induced Instability of Sand Containing Fines: Using the Equivalent Intergranular Void Ratio as a State Variable. International Journal of Geomechanics 22 (8): 04022121. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002486
  • Zeng, Y., X. Shi, W. Chen, and W. Feng. 2023. Equivalent Compression Curve for Clay–Sand Mixtures Using Equivalent Void-Ratio Concept. International Journal of Geomechanics 23 (2): 06022039. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002643
  • Zlatovic, S., and K. Ishihara. 1995. On the Influence of Nonplastic Fines on Residual Strength. Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering, A. A. Balkema, 239–244, The Netherlands.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.