697
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Relating Turbulence and Fish Habitat: A New Approach for Management and Research

, &

REFERENCES

  • Allen, M.A. Seasonal microhabitat use by juvenile spring Chinook salmon in the Yakima River Basin, Washington. Rivers 7: 314–332 (2000).
  • Anderson, J.J. An agent-based event driven foraging model. Nat. Resour. Modell. 15: 55–82 (2002).
  • Anderson, K.E., A.J. Paul, E. McCauley, L.J. Jackson, J.R. Post, and R.M. Nisbet. Instream flow needs in streams and rivers: The importance of understanding ecological dynamics. Front Ecol. Environ. 4: 309–318 (2006).
  • Arend, K.K. Macrohabitat identification, pp. 75–93. In: Aquatic Habitat Assessment: Common Methods (Bain, M.B., and N.J. Stevenson, Eds.) Bethesda, MD: American Fisheries Society (1999).
  • Armantrout, N.B. Glossary of Aquatic Habitat Inventory Terminology. Bethesda, MD: American Fisheries Society (1998).
  • Arthington, A.H., S.B. Bunn, N.L. Poff, and R.J. Naiman. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 16: 1311–1318 (2006).
  • Bates, K., and P. Powers. Upstream passage of juvenile coho salmon through roughened culverts, pp. 192–202. In: Fish Migration and Fish Bypasses (Jungwirth, M., S. Schmutz, and S. Weiss, Eds.). Oxford: Fishing News Books (1998).
  • Beal, D.N., F.S. Hover, M.S. Triantafyllou, J. Liao, and G.V. Lauder. Passive propulsion in vortex wakes. J. Fluid Mech. 549: 385–402 (2006).
  • Beecher, H.A., B.A.B. Caldwell,and S.B. DeMond. Evaluation of depth and velocity preferences of juvenile coho salmon in Washington streams. N. Amer. J. Fish. Manage. 22: 785–795 (2002).
  • Beschta, R.L., and W.S. Platts. Morphological features of small streams: Significance and function. Water Resource Bulletin 22: 369–379 (1986).
  • Bjornn, T.C., and D.W. Reiser. Habitat requirements of salmonids in streams. American Fisheries Society Special Publication 19: 83–138 (1991).
  • Bisson, P.A., K. Sullivan, and J.L. Nielsen. Channel hydraulics, habitat use, and body form of juvenile coho salmon, steelhead, and cutthroat trout in streams. Trans. Am. Fish. Soc. 117: 262–273 (1988).
  • Boisclair, C. D., and M. Tang. Empirical analysis of the influence of swimming pattern on the net energetic cost of swimming in fishes. J. Fish. Biol. 42: 183 (1993).
  • Bradshaw, P. An Introduction to Turbulence and Its Measurement. 1st ed. Oxford, UK: Pergamon Press Ltd. (1971).
  • Buffin-Belanger, T., and A.G. Roy. Effects of a pebble cluster on the turbulent structure of a depth limited flow in a gravel-bed river. Geomorphology 25: 249–267 (1998).
  • Cada, G.F., and M. Odeh. Turbulence at Hydroelectric Power Plants and Its Potential Effects on Fish. BPA Report DOE/BP-26531-1. Portland, OR: Bonneville Power Administration (2001).
  • Clifford, N.J., and J.R. French. Monitoring and analysis of turbulence in geophysical boundaries: Some analytical and conceptual issues, pp. 93–120. In: Turbulence: Perspectives in Flow and Sediment Transport. (Clifford, N.J., J.R. French, and J. Hardisty, Eds.). New York, NY: John Wiley and Sons, Ltd. (1993a).
  • Clifford, N.J., and J.R. French. Monitoring and modelling turbulent flow: Historical and contemporary perspectives, pp 1–34. In: Turbulence Perspectives on Flow and Sediment Transport (Clifford, N.J., J.R. French, and J. Hardisty, Eds.). Chichester, UK: John Wiley and Sons, Ltd. (1993b).
  • Cotel, A.J., P.W. Webb, and H.M. Tritico. Do brown trout choose locations with reduced turbulence? Trans. Am. Fish. Soc., 135: 610–619 (2006).
  • Coutant, C.C. Turbulent attraction flows for juvenille salmonid passage at dams. ORNL/TM-13608. Oak Ridge, TN: Oak Ridge National Laboratory (1998).
  • Coutant, C.C., and R.R. Whitney. Fish behavior in relation to passage through hydropower turbines: A review. Trans. Am. Fish. Soc. 129: 351–380 (2000).
  • Crowder, D.W., and P. Diplas. Evaluating spatially explicit metrics of stream energy gradients using hydrodynamic model simulations. Can. J. Fish. Aquat. Sci. 57: 1497–1507 (2000).
  • Crowder, D.W., and P. Diplas. Vorticity and circulation: Spatial metrics for evaluating flow complexity in stream habitats. Can. J. Fish. Aquat. Sci. 59: 633–645 (2002).
  • Crowder, D.W., and P. Diplas. Applying spatial hydraulic principals to quantify stream habitat. River Res. Appl. 22: 79–89 (2006).
  • Cullen, R.T. Vortex mechanisms of local scour at model fishrocks, pp. 213–218. In: Fisheries Bioengineering Symposium (Colt, J., and R.J.  White, Eds.). American Fisheries Society, Bethesda (1991).
  • Dancy, C.L., Balakrishnan, M., and A.N. Papanicolaou. The spatial inhomogeneity of turbulence above a fully rough, packed bed in open channel flow. Exp. Fluids. 29: 402–410 (2000).
  • Davies, J.T. Turbulence Phenomena: An Introduction to the Eddy Transfer of Momentum, Mass, and Heat, Particularly at Interfaces. 1st ed. New York, NY: Academic Press, Inc. (1972).
  • Enders, E., C. D. Boisclair, and A.G. Roy. The effect of turbulence on the cost of swimming for juveniles of Atlantic salmon (Salmo salar L.). Can. J. Fish. Aquat. Sci., 60: 1149–1160 (2003).
  • Enders, E., C.D. Boisclair, and A.G. Roy. The costs of habitat utilization of wild, farmed, and domesticated juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci., 61: 2302–2313 (2004).
  • Enders, E., C.D. Boisclair, and A.G. Roy. A model of total swimming costs in turbulent flow for juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci., 62: 1079–1089 (2005a).
  • Enders, E.C., T. Buffin-Belanger, C.D. Boisclair, and A.G. Roy. The feeding behaviour of juvenile Atlantic salmon in relation to turbulent flow. J. Fish Biol., 66: 242–253 (2005b).
  • Fausch, K.D. Experimental analysis of microhabitat selection by juvenile steelhead (Oncorhynchus mykiss) and coho salmon (O. kisutch) in a British Columbia stream. Can. J. Fish. Aquat. Sci. 50: 1198–1207 (1993).
  • Fisher, A.C., and P.C. Klingeman. Local scour at fish rocks, pp. 286–290. In: Proceedings of Water for Resource Development (Schreiber, D.L., Ed.). American Society of Civil Engineers, Reston (1984).
  • Franks, P.J. S. Turbulence avoidance: An alternative explanation of turbulence-enhanced ingestion rates in the field. Limnol. Oceanogr. 46: 959–963 (2001).
  • Giannico, G.R., and M.C. Healey. Ideal free distribution theory as a tool to examine juvenile coho salmon (Oncorhynchus kisutch) habitat choice under different conditions of food abundance and cover. Can. J. Fish. Aquat. Sci. 56: 2362–2373 (1999).
  • Goodwin, R.A, J.M. Nestler, J.J. Anderson, L.J. Weber, and D.P. Loucks. Forecasting 3-D fish movement behavior using a Eulerian-Lagrangian-agent method (ELAM). Ecol. Model. 192: 197–223 (2006).
  • Heggenes, J. Flexible summer habitat selection by wild, allopatric brown trout in lotic environments. Trans. Amer. Fish. Soc. 131: 287–298 (2002).
  • Hinch, S.G., and P.S. Rand. Swim speeds and energy use of upriver-migrating sockeye salmon (Oncorhynchus nerka): Role of local environment and fish characteristics. Can. J. Fish. Aquat. Sci. 55: 1821–1831 (1998).
  • Hoekstra, D., and J. Janssen. Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ. Biol. Fish 12: 111–117 (1985).
  • Jenkins, T.M. Jr. Social structure, position choice and microdistribution of two trout species (Salmo trutta and Salmo gairdneri) resident in mountain streams. Animal Behaviour Monographs 2: 56–123 (1969).
  • Kanter, M.J., and S. Coombs. Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J. Exp. Biol. 206: 59–70 (2003).
  • Keeley, E.R., and P.A. Slaney. Quantitative measures of rearing and spawning habitat characteristics for stream-dwelling salmonids: guidelines for habitat restoration. . Watershed Restoration Report 4, Providence of British Columbia: Ministry of Environment, Lands, and Parks, and Ministry of Forest (1996).
  • Kiorboe, T., and B.R. MacKenzie. Turbulence-enhanced prey encounter rates in larval fish: Effects of spatial scale, larval behavior and size. J. Plankton Res. 17: 2319–2331 (1995).
  • Kolmogoroff, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds Numbers. Doklady Akad. Nauk. SSSR 30: 301–305 (1941).
  • Krampa-Morlu, F.N., and R. Balachandar. A study of flow pasta suspended bluff object in an open channel. Can. J. Civ. Engin. 28: 547–554 (2001).
  • Krohn, M.M., and D. Boisclair. Use of stereo-video system to estimate the energy expenditure of free swimming system. Can. J. Fish. Aquat. Sci. 51: 1119–1127 (1994).
  • Liao, J. Neuromuscular control of trout swimming in a vortex street: Implications for energy economy during the Kármán gait. J. Exp. Biol. 207: 3495–506 (2004).
  • Liao, J.C., D.N. Beal, G.V. Lauder, and M.S. Triantafyllou. Fish exploiting vortices decrease muscle activity. Science 302: 1566–1569 (2003a).
  • Liao, J.C., D.N. Beal, G.V. Lauder, and M.S. Triantafyllou. The Karman gait: Novel body kinematics of rainbow trout swimming in a vortex street. J. Exp. Biol. 206: 1059–1073 (2003b).
  • Lim, M.L., N.S. Sodhi, and J.A. Endler. Conservation with sense. Science 319: 281 (2008).
  • Lumley, J.L. Turbulence and turbulence modeling. pp.167–177. In: Research Trends in Fluid Dynamics. (Lumley, J.L., L.G. Leal, A. Acrivos, and S. Leibovich, Eds.). Woodbury, NY: American Institute of Physics (1996).
  • Lupandin, A.I., and D.S. Pavlov. The effects of starvation on the reaction of fish to flows with different intensity in turbulence. J. Ichthy. 36: 408–411 (1996).
  • MacKenzie, B.R., T.J. Miller, S. Cyr, and W.C. Leggett. Evidence for a dome-shaped relationship between turbulence and larval fish ingestion rates. Limnology and Oceanography 39: 1790–1799 (1994).
  • Maki Petays, A., T. Muotka, and A. Huusko. Densities of juvenile brown trout (Salmo trutta) in two subarctic rivers: Assessing the predictive capability of habitat preference indices. Can. J. Fish. Aquat. Sci. 56: 1420–1427 (1999).
  • Matsumura, M., and R.A. Antonia. Momentum and heat transport in the turbulent intermediate wake of a circular cylinder. J. Fluid. Mechan. 250: 651–668 (1993).
  • McDonald, J. The Origins of Angling as Inquiry Into the Early History of Fly Fishing with a New Printing of The Treatise of Fishing with an Angle. New York, NY: Lyons and Bufford Publishers, 273 pp. (1957).
  • McDonough, J.M. Introductory lectures on turbulence Physics, Mathematics and Modeling. University of Kentucky, Departments of Mechanical Engineering and Mathematics, Lexington, KY. . Available from http://www.engr.uky.edu/∼acfd/lctr-notes634.pdf (2007).
  • McLaughlin, R.L., and D.L. G. Noakes. Going against the flow: An examination of the propulsive movements made by young brook trout in streams. Can. J. Fish. Aquat. Sci. 55: 853–860 (1998).
  • Metaxas, A. Behavior in flow: Perspectives on the distribution and dispersion of meroplanktonic larvae in the water column. Can. J. Fish. Aquat. Sci. 58: 98 (2001).
  • Montgomery, J., S. Coombs, and M. Halstead. Biology of the mechanosensory lateral line in fishes. Rev. Fish Biol. Fish. 5: 399–416 (1995).
  • Muelbert, J.H., M.R. Lewis, and D.E. Kelley. The importance of small-scale turbulence in the feeding of herring larvae. J. Plankton Res. 16: 927–944 (1994).
  • Okamoto, S. Turbulent shear flow behind hemisphere cylinder placed on a ground plane, pp. 171–185. In: Turbulent Shear Flows 2 (Bradbury, L.J. S., F. Durst, B.E. Launder, F.W. Schmidt, and J.H. Whitelaw, Eds.). New York, NY: Springer, (1979).
  • Papanicolaou, A.N., P. Diplas, C.L. Dancy, and M. Balakrishnan. Surface roughness effects in near-bed turbulence: Implications to sediment entrainment. J. Engineer. Mechan. 127: 1–8 (2001).
  • Pavlov, D.S., A.I. Lupandin, and N.G. Degtyareva. Role of turbulence in the distribution of downstream migrating young fishes (early larval stages) in wide and narrow channels. Doklady Biological Sciences 341: 211–215 (1995).
  • Pavlov, D.S., A.I. Lupandin, and M.A. Skorobogatov. Influence of flow turbulence on critical flow velocity for gudgeon (Gobio gobio). Doklady Biological Sciences 336: 138–141(1994).
  • Pavlov, D.S., A.I. Lupandin, and M.A. Skorobogatov. The effects of flow turbulence on the behavior and distribution of fish. J. Ichthy. 40: S232–S261 (2000).
  • Petts, G.E., J.M. Nestler, and R. Kennedy. Advancing science for water resources management. Hydrobiologia, 565: 277–288 (2006).
  • Phelps, S.M. Sensory ecology and perceptual allocation: New prospects for neural networks. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362: 355–367 (2007).
  • Puckett, K.J., and L.M. Dill. The energetics of feeding territoriality in juvenile coho salmo (Oncorhynchus kisutch). Behaviour 92: 97–111 (1985).
  • Richter, J.P. The Notebooks of Leonardo Da Vinci. . Available at http://www.gutenberg.org (1888).
  • Roper, A.T., V.R. Schneider, and H.W. Shen. Analytical approach to local scour, pp. 151–161. In: Proceedings of the 12th International Association for Hydraulic Research Congress. Fort Collins, CO (1967).
  • Rosenfeld, J.S., and S. Boss. Fitness consequences of habitat use for juvenile cutthroat trout: Energetic cost and benefits in pools and riffles. Can. J. Fish. Aquat. Sci. 58: 585–593 (2001).
  • Rutherford, J.C. River Mixing. Chichester, UK: John Wiley and Sons. (1994).
  • Shamloo, H., N. Rajaratnam, and C. Katopodis. Hydraulics of simple habitat structures. J Hyd. Res. 39: 1–16 (2001).
  • Shettleworth, S. Cognition, Evolution and Behavior, p. 59. New York, NY: Oxford University Press (1998).
  • Shtaf, L.G., D.S. Pavlov, M.A. Skorobogatov, and A. Sh Harekyan. The influence of flow turbulence on fish behavior. J. Ichthy. 31: 142–148 (1983).
  • Smith, D.L. The shear flow environment of juvenile salmonids. . Ph.D. dissertation, University of Idaho, Moscow, ID, USA (2003).
  • Smith, D.L., E.L. Brannon, B. Shafii, and M. Odeh. Response of juvenile rainbow trout to turbulence produced by prismatoidal shapes. Trans. Amer. Fish. Soc. 134: 741–753
  • Smith, D.L., E.L. Brannon, B. Shafii, and M. Odeh. Use of the average and fluctuating velocity components for estimation of volitional rainbow trout density. Trans. Amer. Fish. Soc. 135: 431–441 (2006).
  • Smith, I.R. Turbulence in lakes and rivers. Hertfordshire, UK: Freshwater Biological Association (1975).
  • Stevenson, N.J., and M.B. Bain. Cover and refuge, pp. 105–113. In: Aquatic Habitat Assessment: Common Methods (Bain M.B., and N.J. Stevenson, Eds.). Bethesda, MD: American Fisheries Society (1999).
  • Tennekes, H., and J.L. Lumley. A First Course in Turbulence. Cambridge, MA: The MIT Press (1972).
  • Triantafyllou, M.S., G.S. Triantafyllou, and D.K. P. Yue. Hydrodynamics of fishlike swimming. Ann. Rev. Fluid. Mech. 32: 33–53 (2000).
  • Tritico, H.M., and A.J. Cotel. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 213: 2284–2293 (2010).
  • Tritico, H.M., and R.H. Hotchkiss. Unobstructed and obstructed turbulent flow in gravel bed rivers. Journal of Hydraulic Engineering 131: 635–645 (2005).
  • Warhaft, Z. Turbulence in nature and the laboratory. Proc. Nat. Acad. Sci. 99 suppl. 1: 2481–2486 (2002).
  • Webb, P.W. Composition and mechanics of routine swimming of rainbow trout, Oncorhynchus mykiss. Can. J. Fish. Aqua. Sci. 48: 583–590 (1993).
  • Webb, P.W. Entrainment by river chub Nocomis micropogon and smallmouth bass Micropterus dolomieu on cylinders. J. Exp. Biol. 201: 2403–2412 (1998).
  • Webb, P.W. Control of posture, depth, and swimming trajectories of fishes. Integ. Comp. Biol. 42: 94–101 (2002).
  • Williams, J.J. Turbulent flow in rivers, pp. 1–32. In: Advances in Fluvial Dynamics and Straigraphy (Carling, P.A., and M.R. Dawson, Eds.). Chichester, UK: John Wiley and Sons (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.