78
Views
25
CrossRef citations to date
0
Altmetric
Original

Regulation of Renal Ouabain-Resistant Na+-ATPase by Leptin, Nitric Oxide, Reactive Oxygen Species, and Cyclic Nucleotides: Implications for Obesity-Associated Hypertension

, , &
Pages 189-207 | Received 23 Aug 2006, Accepted 18 Jan 2007, Published online: 03 Jul 2009

References

  • Proverbio F, Condrescu-Guidi M, Whittembury G. Ouabain-insensitive Na+ stimulation of an Mg2+-dependent ATPase in kidney tissue. Biochim Biophys Acta. 1975; 394: 281–292
  • Proverbio F, Proverbio T, Marin R. Na+-ATPase is a different entity from the (Na++ K+)-ATPase in rat kidney basolateral plasma membranes. Biochim Biophys Acta. 1986; 858: 202–205
  • Proverbio F, Marin R, Proverbio T. The ouabain-insensitive sodium pump. Comp Biochem Physiol A. 1991; 99: 279–283
  • Di Campo V, Henriquez LM, Proverbio T, Marin R, Proverbio F. Effect of a high Na+ diet on cell volume and Na+-stimulated ATPase activities of rat kidney membranes. FEBS Lett. 1990; 274: 96–98
  • Rangel LB, Lopes AG, Lara LS, Carvalho TL, Silva LV, Oliveira MM, Einicker-Lamas M, Vieyra A, Nogaroli L, Caruso-Neves C. PI-PLCβ is involved in the modulation of the proximal tubule Na+-ATPase by angiotensin II. Regul Pept. 2005; 127: 177–182
  • Caruso-Neves C, Lara LS, Rangel LB, Grossi AL, Lopes AG. Angiotensin-(1–7) modulates the ouabain-insensitive Na+-ATPase activity from basolateral membrane of the proximal tubule. Biochim Biophys Acta. 2000; 1467: 189–197
  • Lopes AG, Soares AC, Santos DP, Fernandes MS, Leao-Ferreira LR, Quintana-Gomes E, Caruso-Neves C. PLA2/PGE2 are involved in the inhibitory effect of bradykinin on the angiotensin-(1–7)-stimulated Na+-ATPase activity of the proximal tubule. Regul Pept. 2004; 117: 37–41
  • Gomes CP, Leao-Ferreira LR, Caruso-Neves C, Lopes AG. Adenosine reverses the stimulatory effect of angiotensin II on the renal Na+-ATPase activity through the A2 receptor. Regul Pept. 2005; 129: 9–15
  • Féraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev. 2001; 81: 345–418
  • Nishi A, Eklof AC, Bertorello AM, Aperia A. Dopamine regulation of renal Na+, K+-ATPase activity is lacking in Dahl salt-sensitive rats. Hypertension. 1993; 21: 767–771
  • Nguyen AT, Hayward-Lester A, Sabatini S, Doris PA. Renal Na+, K+-ATPase in SHR: studies of activity and gene expression. Clin Exp Hypertens. 1998; 20: 641–656
  • Shah S, Hussain T. Enhanced angiotensin II-induced activation of Na+, K+-ATPase in the proximal tubules of obese Zucker rats. Clin Exp Hypertens. 2006; 28: 29–40
  • Pantanetti P, Garrapa GG, Mantero F, Boscaro M, Faloia E, Venarucci D. Adipose tissue as an endocrine organ? A review of recent data related to cardiovascular complications of endocrine dysfunctions. Clin Exp Hypertens. 2004; 26: 387–398
  • Beltowski J. Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens. 2006; 24: 789–801
  • Jackson EK, Li P. Human leptin has natriuretic activity in the rat. Am J Physiol. 1997; 272: F333–F338
  • Beltowski J, Wójcicka G, Górny D, Marciniak A. Human leptin administered intraperitoneally stimulates natriuresis and decreases renal medullary Na+, K+-ATPase activity in the rat—impaired effect in dietary-induced obesity. Med Sci Monit. 2002; 8: BR221–BR229
  • Beltowski J, Jamroz-Wisniewska A, Borkowska E, Wójcicka G. Up-regulation of renal Na+, K+-ATPase: the possible novel mechanism of leptin-induced hypertension. Pol. J. Pharmacol. 2004; 56: 213–222
  • Marciniak A, Jamroz-Wisniewska A, Borkowska E, Beltowski J. Time-dependent effect of leptin on renal Na+, K+-ATPase activity. Acta Biochim Pol. 2005; 52: 803–809
  • Beltowski J, Jamroz-Wisniewska A, Nazar J, Wójcicka G. Spectrophotometric assay of renal ouabain-resistant Na+-ATPase and its regulation by leptin and dietary-induced obesity. Acta Biochim Pol. 2004; 51: 1003–1014
  • Beltowski J, Marciniak A, Wójcicka G. Leptin decreases renal medullary Na+, K+-ATPase activity through phosphatidylinositol 3-kinase dependent mechanism. J Physiol Pharmacol. 2004; 55: 391–407
  • Hurst RO. The determination of nucleotide phosphorus with a stannous chloride-hydrazine sulphate reagent. Can J Biochem. 1964; 42: 287–292
  • Lowry OH, Rosenbrough NI, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193: 265–275
  • Beltowski J, Jamroz-Wisniewska A, Borkowska E, Nazar J, Marciniak A. Antioxidant treatment normalizes renal Na+, K+-ATPase activity in leptin-treated rats. Pharmacol Rep. 2005; 57: 219–228
  • Beltowski J, Marciniak A, Jamroz-Wisniewska A, Borkowska E. Nitric oxide—superoxide cooperation in the regulation of renal Na+, K+-ATPase. Acta Biochim. Pol. 2004; 51: 933–942
  • Beltowski J, Marciniak A Wójcicka G, Górny D. Nitric oxide decreases renal medullary Na+, K+-ATPase activity through cyclic GMP-protein kinase G dependent mechanism. J Physiol Pharmacol. 2003; 54: 191–210
  • Burkhardt M, Glazova M, Gambaryan S, Vollkommer T, Butt E, Bader B, Heermeier K, Lincoln TM, Walter U, Palmetshofer A. KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem. 2000; 275: 33536–33541
  • Dousa TP. Cyclic-3',5'-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney. Kidney Int. 1999; 55: 29–62
  • Caruso-Neves C, Rangel LB, Vives D, Vieyra A, Coka-Guevara S, Lopes AG. Ouabain-insensitive Na+-ATPase activity is an effector protein for cAMP regulation in basolateral membranes of the proximal tubule. Biochim Biophys Acta. 2000; 1468: 107–114
  • Lara Lda S, Cavalcante F, Axelband F, De Souza AM, Lopes AG, Caruso-Neves C. Involvement of the Gi/o/cGMP/PKG pathway in the AT2-mediated inhibition of outer cortex proximal tubule Na+-ATPase by Ang-(1–7). Biochem. J. 2006; 395: 183–190
  • Caruso-Neves C, Vives D, Dantas C, Albino CM, Fonseca LM, Lara LS, Iso M, Lopes AG. Ouabain-insensitive Na+-ATPase of proximal tubules is an effector for urodilatin and atrial natriuretic peptide. Biochim Biophys Acta. 2004; 1660: 93–98
  • Su J, Scholz PM, Weiss HR. Differential effects of cGMP produced by soluble and particulate guanylyl cyclase on mouse ventricular myocytes. Exp Biol Med. 2005; 230: 242–250
  • Rivero-Vilches FJ, de Frutos S, Saura M, Rodriguez-Puyol D, Rodriguez-Puyol M. Differential relaxing responses to particulate or soluble guanylyl cyclase activation on endothelial cells: a mechanism dependent on PKG-I α activation by NO/cGMP. Am J Physiol Cell Physiol. 2003; 285: C891–C898
  • Castro LR, Verde I, Cooper DM, Fischmeister R. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation. 2006; 113: 2221–2228
  • Gambaryan S, Hausler C, Markert T, Pohler D, Jarchau T, Walter U, Haase W, Kurtz A, Lohmann SM. Expression of type II cGMP-dependent protein kinase in rat kidney is regulated by dehydration and correlated with renin gene expression. J Clin. Invest. 1996; 98: 662–670
  • Beavo J. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995; 75: 725–748
  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000; 52: 375–414
  • Ortiz PA, Garvin JL. NO inhibits NaCl absorption by rat thick ascending limb through activation of cGMP-stimulated phosphodiesterases. Hypertension. 2001; 37: 467–471
  • Garcia NH, Stoos BA, Carretero OA, Garvin JL. Mechanism of the nitric oxide-induced blockade of collecting duct water permeability. Hypertension. 1996; 27: 679–683
  • Zou AP, Li N, Cowley AW. Production and actions of superoxide in the renal medulla. Hypertension. 2001; 37: 547–553
  • Li N, Yi FX, Spurrier JL, Bobrowitz CA, Zou AP. Production of superoxide through NADH oxidase in thick ascending limb of Henle's loop in rat kidney. Am J Physiol Renal Physiol. 2002; 282: F1111–F1119
  • Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension?. Am J Physiol Regulatory Integrative Comp Physiol. 2005; 289: R913–R935
  • Herrera M, Ortiz PA, Garvin JL. Regulation of thick ascending limb transport: role of nitric oxide. Am J Physiol Renal Physiol. 2006; 290: F1279–F1284
  • Makino A, Skelton MM, Zou AP, Roman RJ, Cowley AW. Increased renal medullary oxidative stress produces hypertension. Hypertension. 2002; 39: 667–672
  • Juncos R, Garvin JL. Superoxide enhances Na-K-2Cl cotransporter activity in the thick ascending limb. Am J Physiol Renal Physiol. 2005; 288: F982–F987
  • Shokoji T, Fujisawa Y, Kimura S, Rahman M, Kiyomoto H, Matsubara K, Moriwaki K, Aki Y, Miyatake A, Kohno M, Abe Y, Nishiyama A. Effects of local administrations of tempol and diethyldithio-carbamic on peripheral nerve activity. Hypertension. 2004; 44: 236–243
  • Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, Vaziri ND. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism. 2006; 55: 928–934
  • Banday AA, Marwaha A, Tallam LS, Lokhandwala MF. Tempol reduces oxidative stress, improves insulin sensitivity, decreases renal dopamine D1 receptor hyperphosphorylation, and restores D1 receptor-G-protein coupling and function in obese Zucker rats. Diabetes. 2005; 54: 2219–2226
  • Villarreal D, Reams G, Samar H, Spear R, Freeman RH. Effects of chronic nitric oxide inhibition on the renal excretory response to leptin. Obes. Res. 2004; 12: 1006–1010
  • Rahmouni K, Correia ML, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension. 2005; 45: 9–14
  • Li L, Mamputu JC, Wiernsperger N, Renier G. Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin. Diabetes. 2005; 54: 2227–2234
  • Dong F, Zhang X, Ren J. Leptin regulates cardiomyocyte contractile function through endothelin-1 receptor-NADPH oxidase pathway. Hypertension. 2006; 47: 222–229
  • Gunduz Z, Dursun N, Akgun H, Ozturk F, Okur H, Koc N. Renal effects of long-term leptin infusion and preventive role of losartan treatment in rats. Regul. Pept. 2005; 132: 59–66
  • Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998; 31: 409–414
  • Kuo JJ, Jones OB, Hall JE. Inhibition of NO synthesis enhances chronic cardiovascular and renal actions of leptin. Hypertension. 2001; 37: 670–676
  • El-Gharbawy AH, Kotchen JM, Grim CE, Kaldunski M, Hoffmann RG, Pausova Z, Hamet P, Kotchen TA. Gender-specific correlates of leptin with hypertension-related phenotypes in African Americans. Am J Hypertens. 2002; 15: 989–993
  • Marciniak A, Borkowska E, Kedra A, Rychlik M, Beltowski J. Time-dependent transition from H2O2-ERK to O2−-NO dependent mechanism in the stimulatory effect of leptin on renal Na+, K+-ATPase in the rat. Clin Exp Pharmacol Physiol. 2006; 33: 1216–1224

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.