113
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Renal sympathetic denervation lowers arterial pressure in canines with obesity-induced hypertension by regulating GAD65 and AT1R expression in rostral ventrolateral medulla

, , , &
Pages 49-57 | Received 22 Dec 2016, Accepted 27 Feb 2017, Published online: 27 Nov 2017

References

  • Banach M, Bromfield S, Howard G, et al. Association of systolic blood pressure levels with cardiovascular events and all-cause mortality among older adults taking antihypertensive medication. Int J Cardiol 2014 Sep;176(1):219–26.
  • Ss L, Vos T, Ad F, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012 Dec 15;380(9859):2224–60.
  • Sarki AM, Nduka CU, Stranges S, et al. Prevalence of hypertension in low- and middle-income countries: A systematic review and meta-analysis. Medicine 2015 Dec;94(50):e1959.
  • Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: Analysis of worldwide data. Lancet. 2005 Jan 15–21;365(9455):217–23.
  • Persell SD. Prevalence of resistant hypertension in the United States, 2003–2008. Hypertension 2011 Jun;57(6):1076–80.
  • Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res 2014 May 23;114(11):1804–14.
  • Parati G, Esler M. The human sympathetic nervous system: Its relevance in hypertension and heart failure. Eur Heart J 2012 May;33(9):1058–66.
  • Lohmeier TE, Iliescu R, Liu B, et al. Systemic and renal-specific sympathoinhibition in obesity hypertension. Hypertension 2012 Feb;59(2):331–38.
  • Gossios TD, Ziakas A, Doumas M, et al. Renal denervation: Transition from pathophysiology to clinical practice. Angiology 2014 Oct;65(9):760–68.
  • Davis MI, Filion KB, Zhang D, et al. Effectiveness of renal denervation therapy for resistant hypertension: A systematic review and meta-analysis. J Am Coll Cardiol 2013 Jul 16;62(3):231–41.
  • Bohm M, Ewen S, Kindermann I, et al. Renal denervation and heart failure. Eur J Heart Fail 2014 Jun;16(6):608–13.
  • Linz D, Van Hunnik A, Ukena C, et al. Renal denervation: Effects on atrial electrophysiology and arrhythmias. Clin Res Cardiol 2014 Oct;103(10):765–74.
  • Witkowski A, Prejbisz A, Florczak E, et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 2011 Oct;58(4):559–65.
  • Gou ZH, Wang X, Wang W. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. Dong Wu Xue Yan Jiu = Zoological Research 2012 Dec;33(E5-6):E75–81.
  • Moult PR. Neuronal glutamate and GABAA receptor function in health and disease. Biochem Soc Trans 2009 Dec;37(Pt 6):1317–22.
  • Gabor A, Leenen FH. Central neuromodulatory pathways regulating sympathetic activity in hypertension. J Appl Physiol 2012 Oct 15;113(8):1294–303.
  • Soghomonian JJ, Martin DL. Two isoforms of glutamate decarboxylase: Why? Trends Pharmacol Sci 1998 Dec;19(12):500–05.
  • DiBona GF. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension 2000 Dec;36(6):1083–88.
  • Jancovski N, Bassi JK, Carter DA, et al. Stimulation of angiotensin type 1A receptors on catecholaminergic cells contributes to angiotensin-dependent hypertension. Hypertension 2013 Nov;62(5):866–71.
  • Sved AF, Ito S, Sved JC. Brainstem mechanisms of hypertension: Role of the rostral ventrolateral medulla. Curr Hypertens Rep 2003 Jun;5(3):262–68.
  • Zhang Z, Yang K, Zeng L, et al. Renal simplicity denervation reduces blood pressure and renal injuries in an obesity-induced hypertension dog model. Clin Exp Pharmacol Physiol 2016 Aug 25.
  • Lohmeier TE, Dwyer TM, Irwin ED, et al. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension 2007 Jun;49(6):1307–14.
  • Ishide T, Maher TJ, Pearce WJ, et al. Simultaneous glutamate and gamma-aminobutyric acid release within ventrolateral medulla during skeletal muscle contraction in intact and barodenervated rats. Brain Res 2001 Dec 27;923(1–2):137–46.
  • Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci 2006 May;7(5):335–46.
  • Coote JH. Landmarks in understanding the central nervous control of the cardiovascular system. Exp Physiol 2007 Jan;92(1):3–18.
  • Hu L, Zhu DN, Yu Z, et al. Expression of angiotensin II type 1 (AT(1)) receptor in the rostral ventrolateral medulla in rats. J Appl Physiol 2002 May;92(5):2153–61.
  • Stocker SD, Meador R, Adams JM. Neurons of the rostral ventrolateral medulla contribute to obesity-induced hypertension in rats. Hypertension 2007 Mar;49(3):640–46.
  • Ito S, Komatsu K, Tsukamoto K, Sved AF. Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats. Hypertension 2000 Jan;35(1 Pt 2):413–17.
  • Erlander MG, Tillakaratne NJ, Feldblum S, et al. Two genes encode distinct glutamate decarboxylases. Neuron 1991 Jul;7(1):91–100.
  • Kosaka T, Tauchi M, Dahl JL. Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Experimental Brain Res 1988;70(3):605–17.
  • Biancardi VC, Campos RR, Stern JE. Altered balance of gamma-aminobutyric acidergic and glutamatergic afferent inputs in rostral ventrolateral medulla-projecting neurons in the paraventricular nucleus of the hypothalamus of renovascular hypertensive rats. J Comp Neurol 2010 Mar 01;518(5):567–85.
  • Hall JE. do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: Interaction of neurohumoral and renal mechanisms. Circ Res 2015 Mar 13;116(6):991–1006.
  • Cato MJ, Toney GM. Angiotensin II excites paraventricular nucleus neurons that innervate the rostral ventrolateral medulla: An in vitro patch-clamp study in brain slices. J Neurophysiol 2005 Jan;93(1):403–13.
  • Li DP, Pan HL. Angiotensin II attenuates synaptic GABA release and excites paraventricular-rostral ventrolateral medulla output neurons. J Pharmacol Exp Ther 2005 Jun;313(3):1035–45.
  • Allen AM, Chai SY, Clevers J, et al. Localization and characterization of angiotensin II receptor binding and angiotensin converting enzyme in the human medulla oblongata. J Comp Neurol 1988 Mar 8;269(2):249–64.
  • Chen D, Jancovski N, Bassi JK, et al. Angiotensin type 1A receptors in C1 neurons of the rostral ventrolateral medulla modulate the pressor response to aversive stress. J Neurosci 2012 Feb 8;32(6):2051–61.
  • Ito S, Komatsu K, Tsukamoto K, et al. Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension 2002 Oct;40(4):552–59.
  • Allen AM, Dosanjh JK, Erac M, et al. Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure. Hypertension 2006 Jun;47(6):1054–61.
  • Konno S, Hirooka Y, Kishi T, Sunagawa K. Sympathoinhibitory effects of telmisartan through the reduction of oxidative stress in the rostral ventrolateral medulla of obesity-induced hypertensive rats. J Hypertens 2012 Oct;30(10):1992–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.