3,287
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Comprehensive viewpoints on heart rate variability at high altitude

, , , , , , , , & ORCID Icon show all
Article: 2238923 | Received 08 May 2023, Accepted 14 Jul 2023, Published online: 08 Aug 2023

References

  • Burdick JA. Heart-rate variability (CVT): concurrent validity and test-retest reliability. Percept Mot Skills. 1968;26(3):1001–13. doi:10.2466/pms.1968.26.3.1001.
  • Hayano J, Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019;38(1):3. doi:10.1186/s40101-019-0193-2.
  • Silva LE, Silva CA, Salgado HC, Fazan R Jr. The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics. Am J Physiol Heart Circ Physiol. 2017;312(3):H469–H77. doi:10.1152/ajpheart.00507.2016.
  • McCraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med. 2015;4(1):46–61. doi:10.7453/gahmj.2014.073.
  • Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. doi:10.3389/fpubh.2017.00258.
  • Hon EH, Lee ST. Electronic evaluation of the fetal heart rate. Viii. Patterns preceding fetal death, further observations. Am J Obstet Gynecol. 1963;87:814–26.
  • Bennett T, Hosking DJ, Hampton JR. Cardiovascular control in diabetes mellitus. Br Med J. 1975;2(5971):585–87. doi:10.1136/bmj.2.5971.585.
  • Bennett T, Riggott PA, Hosking DJ, Hampton JR. Twenty-four hour monitoring of heart rate and activity in patients with diabetes mellitus: a comparison with clinic investigations. Br Med J. 1976;1(6020):1250–51. doi:10.1136/bmj.1.6020.1250.
  • Lowensohn RI, Weiss M, Hon EH. Heart-rate variability in brain-damaged adults. Lancet. 1977;309(8012):626–28. doi:10.1016/S0140-6736(77)92060-8.
  • Weise F, Muller D, Krell D, Kielstein V, Koch RD. Heart rate variability of chronic alcoholics in withdrawal and abstinence. Clin Neurol Neurosurg. 1985;87(2):95–98. doi:10.1016/0303-8467(85)90104-0.
  • Leipzig TJ, Lowensohn RI. Heart rate variability in neurosurgical patients. Neurosurgery. 1986;19(3):356–62. doi:10.1227/00006123-198609000-00004.
  • Kariniemi V, Lehtovirta P, Rauramo I, Forss M. Effects of smoking on fetal heart rate variability during gestational weeks 27 to 32. Am J Obstet Gynecol. 1984;149(5):575–76. doi:10.1016/0002-9378(84)90041-3.
  • Weise F, Krell D, Brinkhoff N. Acute alcohol ingestion reduces heart rate variability. Drug Alcohol Depend. 1986;17(1):89–91. doi:10.1016/0376-8716(86)90040-2.
  • Malpas SC, Purdie GL. Circadian variation of heart rate variability. Cardiovasc Res. 1990;24(3):210–13. doi:10.1093/cvr/24.3.210.
  • Electrophysiology, Task Force of the European Society of Cardiology the North A. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation. 1996;93(5):1043–65. doi:10.1161/01.CIR.93.5.1043.
  • Beckers F, Verheyden B, Aubert AE. Aging and nonlinear heart rate control in a healthy population. Am J Physiol Heart Circ Physiol. 2006;290(6):H2560–70. doi:10.1152/ajpheart.00903.2005.
  • Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottdiener J. Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J Cardiovasc Electrophysiol. 2005;16(9):954–59. doi:10.1111/j.1540-8167.2005.40788.x.
  • Sacha J. Interaction between heart rate and heart rate variability. Ann Noninvasive Electrocardiol. 2014;19(3):207–16. doi:10.1111/anec.12148.
  • Schaller C, Fumm A, Bachmann S, Oechslin L, Nakahara Y, Melliger R, Biaggi P, Wyss CA. Heart rate profiles and heart rate variability during scuba diving. Swiss Med Wkly. 2021;151(4142):w30039. doi:10.4414/SMW.2021.w30039.
  • Storniolo JL, Cairo B, Porta A, Cavallari P. Symbolic analysis of the heart rate variability during the plateau phase following maximal sprint exercise. Front Physiol. 2021;12:632883. doi:10.3389/fphys.2021.632883.
  • Catai AM, Pastre CM, Godoy MF, Silva ED, Takahashi ACM, Vanderlei LCM. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz J Phys Ther. 2020;24(2):91–102. doi:10.1016/j.bjpt.2019.02.006.
  • Sturmberg JP, Bennett JM, Picard M, Seely AJ. The trajectory of life. Decreasing physiological network complexity through changing fractal patterns. Front Physiol. 2015;6:169. doi:10.3389/fphys.2015.00169.
  • Gronwald T, Hoos O. Correlation properties of heart rate variability during endurance exercise: A systematic review. Ann Noninvasive Electrocardiol. 2020;25(1):e12697. doi:10.1111/anec.12697.
  • Romano M, Iuppariello L, Ponsiglione AM, Improta G, Bifulco P, Cesarelli M. Frequency and time domain analysis of foetal heart rate variability with traditional indexes: a critical survey. Comput Math Methods Med. 2016;2016:1–12. doi:10.1155/2016/9585431.
  • Quintana DS, Alvares GA, Heathers JA. Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH): recommendations to advance research communication. Transl Psychiatry. 2016;6(5):e803. doi:10.1038/tp.2016.73.
  • Heathers JA. Everything Hertz: methodological issues in short-term frequency-domain HRV. Front Physiol. 2014;5:177. doi:10.3389/fphys.2014.00177.
  • Latremouille S, Lam J, Shalish W, Sant’anna G. Neonatal heart rate variability: a contemporary scoping review of analysis methods and clinical applications. BMJ Open. 2021;11(12):e055209. doi:10.1136/bmjopen-2021-055209.
  • Hejjel L, Gal I. Heart rate variability analysis. Acta Physiol Hung. 2001;88(3–4):219–30. doi:10.1556/APhysiol.88.2001.3-4.4.
  • Zimatore G, Gallotta MC, Campanella M, Skarzynski PH, Maulucci G, Serantoni C, De Spirito M, Curzi D, Guidetti L, Baldari C, et al. Detecting metabolic thresholds from nonlinear analysis of heart rate time series: a review. Int J Environ Res Public Health. 2022;19(19):12719. doi:10.3390/ijerph191912719.
  • Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Phil Trans R Soc A. 2009;367(1887):277–96. doi:10.1098/rsta.2008.0232.
  • Mesin L. Estimation of complexity of sampled biomedical continuous time signals using approximate entropy. Front Physiol. 2018;9:710. doi:10.3389/fphys.2018.00710.
  • Fisch C. Evolution of the clinical electrocardiogram. J Am Coll Cardiol. 1989;14(5):1127–38. doi:10.1016/0735-1097(89)90407-5.
  • Siecinski S, Kostka PS, Tkacz EJ. Heart rate variability analysis on electrocardiograms, seismocardiograms and gyrocardiograms on healthy volunteers. Sensors (Basel). 2020;20(16):4522. doi:10.3390/s20164522.
  • Friedrich D, Aubert XL, Fuhr H, Brauers A. Heart rate estimation on a beat-to-beat basis via ballistocardiography - a hybrid approach. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4048–51.
  • Ramos-Castro J, Moreno J, Miranda-Vidal H, Garcia-Gonzalez MA, Fernandez-Chimeno M, Rodas G, Capdevila L. Heart rate variability analysis using a seismocardiogram signal. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5642–45.
  • Siecinski S, Tkacz EJ, Kostka PS. Comparison of HRV indices obtained from ECG and SCG signals from CEBS database. Biomed Eng Online. 2019;18(1):69. doi:10.1186/s12938-019-0687-5.
  • Cooper TM, McKinley PS, Seeman TE, Choo TH, Lee S, Sloan RP. Heart rate variability predicts levels of inflammatory markers: Evidence for the vagal anti-inflammatory pathway. Brain Behav Immun. 2015;49:94–100. doi:10.1016/j.bbi.2014.12.017.
  • Ye J, Zhu R, He X, Feng Y, Yang L, Zhu X, Deng Q, Wu T, Zhang X, Hsu Y-H. Association of plasma IL-6 and Hsp70 with HRV at different levels of PAHs metabolites. PLoS One. 2014;9(4):e92964. doi:10.1371/journal.pone.0092964.
  • Hansen CS, Vistisen D, Jorgensen ME, Witte DR, Brunner EJ, Tabak AG, Kivimaki M, Roden M, Malik M, Herder C. Adiponectin, biomarkers of inflammation and changes in cardiac autonomic function: Whitehall II study. Cardiovasc Diabetol. 2017;16(1):153. doi:10.1186/s12933-017-0634-3.
  • Markos F, Snow HM, Kidd C, Conlon K. Inhibition of neuronal nitric oxide reduces heart rate variability in the anaesthetised dog. Exp Physiol. 2001;86(5):539–41. doi:10.1113/eph8602257.
  • Chaswal M, Das S, Prasad J, Katyal A, Fahim M. Chemical sympathectomy restores baroreceptor-heart rate reflex and heart rate variability in rats with chronic nitric oxide deficiency. Physiol Res. 2015;64(4):459–66. doi:10.33549/physiolres.932804.
  • Ma J, Tan Q, Nie X, Zhou M, Wang B, Wang X, Cheng M, Ye Z, Xie Y, Wang D, et al. Longitudinal relationships between polycyclic aromatic hydrocarbons exposure and heart rate variability: Exploring the role of transforming growth factor-beta in a general Chinese population. J Hazard Mater. 2022;425:127770. doi:10.1016/j.jhazmat.2021.127770.
  • Wang B, Cheng M, Yang S, Qiu W, Li W, Zhou Y, Wang X, Yang M, He H, Zhu C, et al. Exposure to acrylamide and reduced heart rate variability: The mediating role of transforming growth factor-beta. J Hazard Mater. 2020;395:122677. doi:10.1016/j.jhazmat.2020.122677.
  • Yu L, Wang B, Liu W, Xu T, Yang M, Wang X, Tan Q, Yang S, Fan L, Cheng M, et al. Cross-sectional and longitudinal associations of styrene and ethylbenzene exposure with heart rate variability alternation among urban adult population in China. Sci Total Environ. 2022;845:157231.
  • Wang L, Luo J, Liu W, Huang X, Xu J, Zhou Y, Jiang L, Yang J. Elevated circulating growth differentiation factor 15 is related to decreased heart rate variability in chronic kidney disease patients. Ren Fail. 2021;43(1):340–46. doi:10.1080/0886022X.2021.1880938.
  • Sallam MY, El-Gowilly SM, Abdel-Galil AG, El-Mas MM. Modulation by central MAPKs/PI3K/sGc of the TNF-alpha/alpha/Inos-dependent hypotension and compromised cardiac autonomic control in endotoxic rats. J Cardiovasc Pharmacol. 2016;68(2):171–81. doi:10.1097/FJC.0000000000000400.
  • Lee NY, Park HY, Na KS, Park SH, Park CK. Association between heart rate variability and systemic endothelin-1 concentration in normal-tension glaucoma. Curr Eye Res. 2013;38(4):516–19. doi:10.3109/02713683.2012.745881.
  • Yang Y. Correlation between subclinical inflammation and heart rate variability in patients with hypertension. China & Foreign Medical Treatment. 2013;32(36):2.
  • Tan R. The relationship between carotid Intima-Media thickness and heart rate variability, inflammatory markers in patients with essential hypertension . Nanhua University, 2019.
  • Wang X, Wei Z, Wang J, Wang Y. Analysis of heart rate variability and high-sensitivity C-reactive protein in hypertensive patients with obesity. Clin Focus. 2014;29(4):4.
  • Qiu Z, Wang Q. Correlation between heart rate variability and C-reactive protein in elderly patients with coronary heart disease. West Med. 2008;20(5):987–88.
  • Lanza GA, Sgueglia GA, Cianflone D, Rebuzzi AG, Angeloni G, Sestito A, Infusino F, Crea F, Maseri A, Investigators S. Relation of heart rate variability to serum levels of C-reactive protein in patients with unstable angina pectoris. Am J Cardiol. 2006;97(12):1702–06. doi:10.1016/j.amjcard.2006.01.029.
  • Wegeberg AL, Okdahl T, Floyel T, Brock C, Ejskjaer N, Riahi S, Pociot F, Storling J, Brock B. Circulating inflammatory markers are inversely associated with heart rate variability measures in type 1 diabetes. Mediators Inflamm. 2020;2020:3590389. doi:10.1155/2020/3590389.
  • Wegeberg AM, Okdahl T, Riahi S, Ejskjaer N, Pociot F, Storling J, Brock B, Brock C. Elevated levels of interleukin-12/23p40 may serve as a potential indicator of dysfunctional heart rate variability in type 2 diabetes. Cardiovasc Diabetol. 2022;21(1):5. doi:10.1186/s12933-021-01437-w.
  • Herder C, Schamarek I, Nowotny B, Carstensen-Kirberg M, Strassburger K, Nowotny P, Kannenberg JM, Strom A, Puttgen S, Mussig K, et al. Inflammatory markers are associated with cardiac autonomic dysfunction in recent-onset type 2 diabetes. Heart. 2017;103(1):63–70. doi:10.1136/heartjnl-2015-309181.
  • Karthiga K, Pal GK, Dasari P, Nanda N, Velkumary S, Chinnakali P. Attenuation of baroreflex sensitivity and heart rate variability is linked to reduced levels of nitric oxide in pregnant women having risks of developing gestational hypertension. Clin Exp Hypertens. 2021;43(4):356–62. doi:10.1080/10641963.2021.1883053.
  • Luo J, Yuan G, LI Y, Liu Q. The relationship between catecholamine and heart rate variability in patients with unstable angina pectoris. Chin J Pract Electrocardiogram. 1998;3(3):132–33.
  • Zhang D, Tu H, Wang C, Cao L, Hu W, Hackfort BT, Muelleman RL, Wadman MC, Li YL. Inhibition of N-type calcium channels in cardiac sympathetic neurons attenuates ventricular arrhythmogenesis in heart failure. Cardiovasc Res. 2021;117(1):137–48. doi:10.1093/cvr/cvaa018.
  • Kozasa Y, Nakashima N, Ito M, Ishikawa T, Kimoto H, Ushijima K, Makita N, Takano M. HCN4 pacemaker channels attenuate the parasympathetic response and stabilize the spontaneous firing of the sinoatrial node. J Physiol. 2018;596(5):809–25. doi:10.1113/JP275303.
  • Moreno H Jr., Metze K, Bento AC, Antunes E, Zatz R, de Nucci G. Chronic nitric oxide inhibition as a model of hypertensive heart muscle disease. Basic Res Cardiol. 1996;91(3):248–55. doi:10.1007/BF00788911.
  • Koenig SN, Mohler PJ. The evolving role of ankyrin-B in cardiovascular disease. Heart Rhythm. 2017;14(12):1884–89. doi:10.1016/j.hrthm.2017.07.032.
  • Nihei T, Takahashi J, Tsuburaya R, Ito Y, Shiroto T, Hao K, Takagi Y, Matsumoto Y, Nakayama M, Miyata S, et al. Circadian variation of Rho-kinase activity in circulating leukocytes of patients with vasospastic angina. Circ J. 2014;78(5):1183–90. doi:10.1253/circj.CJ-13-1458.
  • Wydeven N, Posokhova E, Xia Z, Martemyanov KA, Wickman K. RGS6, but not RGS4, is the dominant regulator of G protein signaling (RGS) modulator of the parasympathetic regulation of mouse heart rate. J Biol Chem. 2014;289(4):2440–49. doi:10.1074/jbc.M113.520742.
  • Del Valle-Mondragon L, Becerra-Luna B, Cartas-Rosado R, Infante O, Perez-Grovas H, Lima-Zapata LI, Lerma C, Rodriguez-Chagolla J, Martinez-Memije R. Correlation between angiotensin serum levels and very-low-frequency spectral power of heart rate variability during hemodialysis. Life (Basel). 2022;12(7):1020. doi:10.3390/life12071020.
  • Liu S, Wu X, JIng L. Correlation between serum HCY and heart rate variability and arrhythmia in patients with type 2 diabetes and coronary heart disease. J Mol Diagn Treat. 2020;12(5):5.
  • Hansen CS, Faerch K, Jorgensen ME, Malik M, Witte DR, Brunner EJ, Tabak AG, Kivimaki M, Vistisen D. Heart rate, autonomic function, and future changes in glucose metabolism in individuals without diabetes: the Whitehall II cohort study. Diabetes Care. 2019;42(5):867–74. doi:10.2337/dc18-1838.
  • Mallet RT, Burtscher J, Pialoux V, Pasha Q, Ahmad Y, Millet GP, Burtscher M. Molecular mechanisms of high-altitude acclimatization. Int J Mol Sci. 2023;24(2):1698. doi:10.3390/ijms24021698.
  • Bilo G, Caravita S, Torlasco C, Parati G. Blood pressure at high altitude: physiology and clinical implications. Kardiol Pol. 2019;77(6):596–603. doi:10.33963/KP.14832.
  • Zupet P, Princi T, Finderle Z. Effect of hypobaric hypoxia on heart rate variability during exercise: a pilot field study. Eur J Appl Physiol. 2009;107(3):345–50. doi:10.1007/s00421-009-1123-5.
  • Dhar P, Sharma VK, Das SK, Barhwal K, Hota SK, Singh SB. Differential responses of autonomic function in sea level residents, acclimatized lowlanders at >3500 m and Himalayan high altitude natives at >3500 m: A cross-sectional study. Respir Physiol Neurobiol. 2018;254:40–48. doi:10.1016/j.resp.2018.04.002.
  • Aebi MR, Bourdillon N, Bron D, Millet GP. Minimal Influence of hypobaria on heart rate variability in hypoxia and Normoxia. Front Physiol. 2020;11:1072. doi:10.3389/fphys.2020.01072.
  • Zhang D, She J, Zhang Z, Yu M. Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization. Biomed Eng Online. 2014;13(1):73. doi:10.1186/1475-925X-13-73.
  • Ma C, Xu H, Yan M, Huang J, Yan W, Lan K, Wang J, Zhang Z. Longitudinal changes and recovery in heart rate variability of young healthy subjects when exposure to a hypobaric hypoxic environment. Front Physiol. 2021;12:688921. doi:10.3389/fphys.2021.688921.
  • Jarczok MN, Kleber ME, Koenig J, Loerbroks A, Herr RM, Hoffmann K, Fischer JE, Benyamini Y, Thayer JF, Uchino BN. Investigating the associations of self-rated health: heart rate variability is more strongly associated than inflammatory and other frequently used biomarkers in a cross sectional occupational sample. PLoS One. 2015;10(2):e0117196. doi:10.1371/journal.pone.0117196.
  • Ando SI. Influence of hypoxia induced by sleep disordered breathing in case of hypertension and atrial fibrillation. J Cardiol. 2018;72(1):10–18. doi:10.1016/j.jjcc.2018.02.016.
  • Shen Y, Chang C, Zhang J, Jiang Y, Ni B, Wang Y. Prevalence and risk factors associated with hypertension and prehypertension in a working population at high altitude in China: a cross-sectional study. Environ Health Prev Med. 2017;22(1):19. doi:10.1186/s12199-017-0634-7.
  • Maedeker JA, Stoka KV, Bhayani SA, Gardner WS, Bennett L, Procknow JD, Staiculescu MC, Walji TA, Craft CS, Wagenseil JE. Hypertension and decreased aortic compliance due to reduced elastin amounts do not increase atherosclerotic plaque accumulation in Ldlr-/- mice. Atherosclerosis. 2016;249:22–29. doi:10.1016/j.atherosclerosis.2016.03.022.
  • Chemla D, Berthelot E, Weatherald J, Lau EMT, Savale L, Beurnier A, Montani D, Sitbon O, Attal P, Boulate D, et al. The isobaric pulmonary arterial compliance in pulmonary hypertension. ERJ Open Res. 2021;7(2):00941–2020. doi:10.1183/23120541.00941-2020.
  • Chuang ML, Manning WJ. Left ventricular hypertrophy and excess cardiovascular mortality is late gadolinium enhancement the imaging link? J Am Coll Cardiol. 2009;53(3):292–94. doi:10.1016/j.jacc.2008.09.025.
  • Li C, Chang Q, Zhang J, Chai W. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension. Med. 2018;97(18):e0639. doi:10.1097/MD.0000000000010639.
  • Felber Dietrich D, Schindler C, Schwartz J, Barthelemy JC, Tschopp JM, Roche F, von Eckardstein A, Brandli O, Leuenberger P, Gold DR, et al. Heart rate variability in an ageing population and its association with lifestyle and cardiovascular risk factors: results of the SAPALDIA study. Europace. 2006;8(7):521–29. doi:10.1093/europace/eul063.
  • Spiegel K, Leproult R, L’Hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–71. doi:10.1210/jc.2004-1003.
  • Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’orto S, Piccaluga E, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59(2):178–93. doi:10.1161/01.RES.59.2.178.
  • Tongers J, Schwerdtfeger B, Klein G, Kempf T, Schaefer A, Knapp JM, Niehaus M, Korte T, Hoeper MM. Incidence and clinical relevance of supraventricular tachyarrhythmias in pulmonary hypertension. Am Heart J. 2007;153(1):127–32. doi:10.1016/j.ahj.2006.09.008.
  • Humbert M, Montani D, Evgenov OV, Simonneau G. Definition and classification of pulmonary hypertension. Handb Exp Pharmacol. 2013;218:3–29.
  • Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91(1):265–325. doi:10.1152/physrev.00031.2009.
  • Khan AA, Lip GYH, Shantsila A. Heart rate variability in atrial fibrillation: The balance between sympathetic and parasympathetic nervous system. Eur J Clin Invest. 2019;49(11):e13174. doi:10.1111/eci.13174.
  • Bayes de Luna A. Supraventricular arrhythmia: electrocardiographic aspects. Medwave. 2016;16(Suppl4):e6815. doi:10.5867/medwave.2016.6815.
  • Ruiz-Cano MJ, Gonzalez-Mansilla A, Escribano P, Delgado J, Arribas F, Torres J, Flox A, Riva M, Gomez MA, Saenz C. Clinical implications of supraventricular arrhythmias in patients with severe pulmonary arterial hypertension. Int J Cardiol. 2011;146(1):105–06. doi:10.1016/j.ijcard.2010.09.065.
  • Chen P, Wu T, Peng Q, Fan N, Shi Y, Wang H, Chen L, Guo H. Application value between dynamic electrocardiogram and MSCT myocardial perfusion imaging in the diagnosis of myocardial ischemia in coronary heart disease. Ann Palliat Med. 2021;10(10):10720–25. doi:10.21037/apm-21-2481.
  • Alkhodari M, Jelinek HF, Werghi N, Hadjileontiadis LJ, Khandoker AH. Investigating circadian heart rate variability in coronary artery disease patients with various degrees of left ventricle ejection fraction. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:714–17.
  • Qiu Z, Lei S, Zhao B, Wu Y, Su W, Liu M, Meng Q, Zhou B, Leng Y, Xia ZY. NLRP3 inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev. 2017;2017:9743280. doi:10.1155/2017/9743280.
  • Bourdier G, Detrait M, Bouyon S, Lemarie E, Brasseur S, Doutreleau S, Pepin JL, Godin-Ribuot D, Belaidi E, Arnaud C. Intermittent hypoxia triggers early cardiac remodeling and contractile dysfunction in the time-course of ischemic cardiomyopathy in rats. J Am Heart Assoc. 2020;9(16):e016369. doi:10.1161/JAHA.120.016369.
  • Kujime S, Hara H, Enomoto Y, Nakamura K, Yoshitama T, Noro M, Moroi M, Sugi K, Nakamura M. Analysis of heart rate variability in a patient with takotsubo cardiomyopathy syndrome on the actual onset day. Int Heart J. 2019;60(6):1444–47. doi:10.1536/ihj.19-092.
  • Bhagi S, Srivastava S, Singh SB. High-altitude pulmonary edema: review. J Occup Health. 2014;56(4):235–43. doi:10.1539/joh.13-0256-RA.
  • Paralikar SJ. High altitude pulmonary edema-clinical features, pathophysiology, prevention and treatment. Indian J Occup Environ Med. 2012;16(2):59–62. doi:10.4103/0019-5278.107066.
  • Allemann Y, Rotter M, Hutter D, Lipp E, Sartori C, Scherrer U, Seiler C. Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude. Am J Physiol Heart Circ Physiol. 2004;286(3):H856–62. doi:10.1152/ajpheart.00518.2003.
  • Gupta RK, Himashree G, Singh K, Soree P, Desiraju K, Agrawal A, Ghosh D, Dass D, Reddy PK, Panjwani U, et al. Elevated pulmonary artery pressure and brain natriuretic peptide in high altitude pulmonary edema susceptible non-mountaineers. Sci Rep. 2016;6(1):21357. doi:10.1038/srep21357.
  • Mazzuero G. Altitude and the autonomic nervous system. Ital Heart J Suppl. 2001;2(8):845–49.
  • Zhang W, Si LY. Obstructive sleep apnea syndrome (OSAS) and hypertension: pathogenic mechanisms and possible therapeutic approaches. Ups J Med Sci. 2012;117(4):370–82. doi:10.3109/03009734.2012.707253.
  • Qin H, Steenbergen N, Glos M, Wessel N, Kraemer JF, Vaquerizo-Villar F, Penzel T. The different facets of heart rate variability in obstructive sleep apnea. Front Psychiatry. 2021;12:642333. doi:10.3389/fpsyt.2021.642333.
  • Khoo MC, Blasi A. Sleep-related changes in autonomic control in obstructive sleep apnea: a model-based perspective. Respir Physiol Neurobiol. 2013;188(3):267–76. doi:10.1016/j.resp.2013.05.017.
  • Gammoudi N, Ben Cheikh R, Saafi MA, Sakly G, Dogui M. Cardiac autonomic control in the obstructive sleep apnea. Libyan J Med. 2015;10(1):26989. doi:10.3402/ljm.v10.26989.
  • Leinveber P, Halamek J, Jurak P. Ambulatory monitoring of myocardial ischemia in the 21st century-an opportunity for high frequency QRS analysis. J Electrocardiol. 2016;49(6):902–06. doi:10.1016/j.jelectrocard.2016.07.034.
  • Ferrari R, Fox K. Heart rate reduction in coronary artery disease and heart failure. Nat Rev Cardiol. 2016;13(8):493–501. doi:10.1038/nrcardio.2016.84.
  • Young T, Palta M, Dempsey J, Peppard PE, Nieto FJ, Hla KM. Burden of sleep apnea: rationale, design, and major findings of the Wisconsin sleep cohort study. WMJ. 2009;108(5):246–49.
  • Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, Stubbs R, Hla KM. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31(8):1071–78. doi:10.1002/14651858.CD001106.pub3.
  • Hoshi RA, Andreao RV, Santos IS, Dantas EM, Mill JG, Lotufo PA, Bensenor IM. Linear and nonlinear analyses of heart rate variability following orthostatism in subclinical hypothyroidism. Med. 2019;98(4):e14140. doi:10.1097/MD.0000000000014140.
  • Limberg JK, Dube S, Kuijpers M, Farni KE, Basu A, Rizza RA, Curry TB, Basu R, Joyner MJ. Effect of hypoxia on heart rate variability and baroreflex sensitivity during hypoglycemia in type 1 diabetes mellitus. Clin Auton Res. 2015;25(4):243–50. doi:10.1007/s10286-015-0301-2.
  • Ji X. Clinical efficacy of metoprolol tartrate combined with nifedipine in the treatment of essential hypertension. Modern Diagnosis and Treatment. 2020;31(16):3.
  • Lin S, Lin D, Huang K, Zheng Y. Effects of Rhodiola sachalinensis injection on cardiac function, QT dispersion and heart rate variability in patients with acute coronary syndrome. Chin Geriatric Health Care Med. 2012;10(4):2.
  • Du D. Effect of Rhodiola sachalinensis injection on QT dispersion and heart rate variability in elderly patients with unstable angina pectoris. Mod J Integr Chin West Med. 2017;26(7):3.
  • Zhao X. Protective effect and mechanism research of salidroside on cardiac function of exhaustive exercise Rats. Hebei Medical University; 2015.
  • Wang C. Effect of salvia miltiorrhiza polyphenolate on heart rate variability and cardiac function in elderly patients with coronary heart disease. Grassroots Med Forum. 2021;25(17):2.
  • Zeng X. Clinical study of Danshen injection on cardiac function and heart variability in patients with chronic heart failure. Med Forum Mag. 2014;35(1):3.
  • Liang Z. Hospital, H. X. M. G. G., Effect of Buqi Zhitong decoction on exercise test indexes and heart rate variability in patients with stable angina pectoris. Shaanxi Tradit Chin Med. 2013;34(2):144–45. %@ 1000-7369 %L 61-1105/R %W CNKI.
  • Duan M, Xiong Y, Li X. Effect of tongluo anxin decoction on heart rate variability in patients with unstable angina pectoris of coronary heart disease. Res Tradit Chin Med. 2018;31(12):3.
  • Hung PH, Lin FC, Tsai HC, Chao HS, Chou CW, Chang SC. The usefulness of prophylactic use of acetazolamide in subjects with acute mountain sickness. J Chin Med Assoc. 2019;82(2):126–32. doi:10.1097/JCMA.0000000000000014.
  • Naghan PA, Raeisi K, Khoundabi B, Foroughi M, Malekmohammad M, Mohebbi M, Bagheri A, Fahimi F. The effect of acetazolamide on the improvement of central apnea caused by abusing opioid drugs in the clinical trial. Sleep Breath. 2020;24(4):1417–25. doi:10.1007/s11325-019-01968-3.
  • Kontopoulos AG, Athyros VG, Papageorgiou AA, Papadopoulos GV, Avramidis MJ, Boudoulas H. Effect of quinapril or metoprolol on heart rate variability in post-myocardial infarction patients. Am J Cardiol. 1996;77(4):242–46. doi:10.1016/S0002-9149(97)89386-1.
  • Vesalainen RK, Kantola IM, Airaksinen KE, Tahvanainen KU, Kaila TJ. Vagal cardiac activity in essential hypertension: the effects of metoprolol and ramipril. Am J Hypertens. 1998;11(6 Pt 1):649–58. doi:10.1016/S0895-7061(98)00021-1.
  • Zhang Q, Lu XN, Sun NL. Effects of Verapamil and metoprolol on heart rate variability in patients with coronary heart disease. Journal of Peking University, Health sciences. 2007;39(6):610–13.
  • Gunes Y, Guntekin U, Tuncer M, Sahin M. The effects of trimetazidine on heart rate variability in patients with heart failure. Arq Bras Cardiol. 2009;93(2):154–58. doi:10.1590/S0066-782X2009000800014.
  • Zhang J, He S, Wang X, Wang D. Effect of trimetazidine on heart rate variability in elderly patients with acute coronary syndrome. Pak J Med Sci. 2016;32(1):75–78. doi:10.12669/pjms.321.8378.
  • Wang Y, Sun Z, Wang Z, Gai N, Yang T, Zhi G, Wang Y, Xilie L, Li T. Department of Cardiovascular Medicine, P. G. H., Beijing, the pair-matched cross-over study of the effects of the trimetazidine on the heart rate variability/HRV in old myocardial infarcted cases. Chin J Clin Pharmacol. 2002;3(8):188–91.
  • Ou Y, Department of Cardiology, H. T. P. s. H. Guangxi Zhuang autonomous region, effect of trimetazidine on heart function and heart rate variability in patients with ischemic cardiomyopathy heart failure. China Med Herald. 2012;9(18):90–91. %@ 1673-7210 %L 11-5539/R %W CNKI
  • Dai X, Yang X, Hua W, Yan L, Youwen Y, Dou W, University, Y. H. A. t. T. Effect of trimetazidine on cardiac function and heart rate variability in patients with chronic heart failure. Shandong Med J. 2014;54(4):52–54. %@ 1002-266X %L 37-1156/R %W CNKI
  • Wolk R, Kulakowski P, Ceremuzynski L. Nifedipine and captopril exert divergent effects on heart rate variability in patients with acute episodes of hypertension. J Hum Hypertens. 1996;10(5):327–32.
  • Hoshide S, Kario K, Mitsuhashi T, Ikeda U, Shimada K. Is there any difference between intermediate-acting and long-acting calcium antagonists in diurnal blood pressure and autonomic nervous activity in hypertensive coronary artery disease patients? Hypertens Res. 2000;23(1):7–14. doi:10.1291/hypres.23.7.
  • Xiang H, Gou H. Department of Gerontology, G. H. o. T. C. M., Sichuan Province, influence of nifedipine sustained-release tablet on hemorheological indexes, central and peripheral arterial pressure and HRV in CHF+ventricular arrhythmia patients. J Cardiovasc Rehabil Med. 2020;29(3):340–45. %@ 1008-0074 %L 35-1193/R %W CNKI.
  • Shen J, College, T. F. A. H. o. Z. U. M. Comparison of clinical effects of nifedipine with different dosage forms in the treatment of hypertension. Diet Health Care. 2019;6(14):70–71.
  • Ylitalo A, Airaksinen KE, Sellin L, Huikuri HV. Effects of combination antihypertensive therapy on baroreflex sensitivity and heart rate variability in systemic hypertension. Am J Cardiol. 1999;83(6):885–89. doi:10.1016/S0002-9149(98)01067-4.
  • Xiao B, Yin PF, Jin YH, Liu F, Lu JC, Yang XC. Trimetazidine effect on the cardiac autonomic nerve system after percutaneous coronary intervention in coronary heart disease: a propensity-score matched study. J Coll Physicians Surg Pak. 2022;32(5):559–64.
  • Zhou J, Dagao LI, Hao N, Lian H, Department of Cardiology, D. C. P. s. H., Lianyungang. Influence of nifedipine combined metoprolol on blood pressure and heart rate in hypertensive patients with coronary heart disease. J Cardiovasc Rehabil Med. 2018;27(6):692–96. %@ 1008-0074 %L 35-1193/R %W CNKI
  • Lijie W, Hospital, G. H. S. T. Effect of metoprolol combined with felodipine on heart rate variability and morning blood pressure peak in patients with hypertension and coronary heart disease. Shenzhen J Integr Tradit West Med. 2017;27(14):146–48. %@ 1007-0893 %L 44-1419/R
  • Zhiqiang L. University, O. W. P. o. J. H. A. t. M. C. o. S., Clinical efficacy of benazepril combined with metoprolol for chronic heart failure. J Pract Clin Med. 2013;17(13):78–81. %@ 1672-2353 %L 32-1697/R %W CNKI.
  • Gu Y, Sun X, Jiang X. Effect of trimetazidine combined with metoprolol on heart rate variability in patients with unstable angina pectoris. J Cardiovasc Cerebrovascular Dis Integr Tradit Chin West Med. 2007;5(9):2.
  • Wu S, Fu G. Intervention of metoprolol combined with wenxin granules on arrhythmia and heart rate variability after acute myocardial infarction. China Rural Health Administration. 2012;32(5):2.
  • Yanghua Li ZL. Clinical observation of yindanxintai dropping pill combined with metoprolol in the treatment of supraventricular arrhythmia. Pract J Cardio Cerebral Pulmonary Vas Dis. 2014;22(12):87–88 .
  • Wu J, Lu AD, Zhang LP, Zuo YX, Jia YP. Study of clinical outcome and prognosis in pediatric core binding factor-acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi. 2019;40(1):52–57. doi:10.3760/cma.j.issn.0253-2727.2019.01.010.
  • Qi G. Effects of salidroside combined with L-carnitine on glucose and lipid metabolism and heart rate variability in patients with coronary heart disease and diabetes. J Cardiovasc Cerebrovascular Dis Integr Tradit Chin West Med. 2018;16(7):4.
  • Feng Y, Li S, Yin Z, Li Y. Effect of xinkeshu tablets and metoprolol on neuropeptide Y and heart rate variability in young patients with non organic ventricular presystole. J Cardiovasc Cerebrovascular Dis Integr Tradit Chin West Med. 2021;19(13):4.