493
Views
0
CrossRef citations to date
0
Altmetric
Research Article

FGF21 attenuates salt-sensitive hypertension via regulating HNF4α/ACE2 axis in the hypothalamic paraventricular nucleus of mice

, , &
Article: 2361671 | Received 02 May 2024, Accepted 24 May 2024, Published online: 06 Jun 2024

References

  • Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78(1):223–7. doi:10.1146/annurev-physiol-021115-105339.
  • Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–67. doi:10.1038/s41574-020-0386-0.
  • Tan H, Yue T, Chen Z, Wu W, Xu S, Weng J. Targeting FGF21 in cardiovascular and metabolic diseases: from mechanism to medicine. Int J Biol Sci. 2023;19(1):66–88. doi:10.7150/ijbs.73936
  • Pandhi P, Ter Maaten JM, Anker SD, Ng LL, Metra M, Samani NJ, Lang CC, Dickstein K, de Boer RA, van Veldhuisen DJ, et al. Pathophysiologic processes and novel biomarkers associated with congestion in heart failure. JACC Heart Fail. 2022;10(9):623–32. doi:10.1016/j.jchf.2022.05.013.
  • Ferrer-Curriu G, Redondo-Angulo I, Guitart-Mampel M, Ruperez C, Mas-Stachurska A, Sitges M, Garrabou G, Villarroya F, Fernandez-Sola J, Planavila A. Fibroblast growth factor-21 protects against fibrosis in hypertensive heart disease. J Pathol. 2019;248(13):30–40. doi:10.1002/path.5226.
  • Yafei S, Elsewy F, Youssef E, Ayman M, El-Shafei M. Fibroblast growth factor 21 association with subclinical atherosclerosis and arterial stiffness in type 2 diabetes. Diabetes Metab Syndr. 2019;13(1):882–88. doi:10.1016/j.dsx.2018.12.007
  • Quesada-Lopez T, Cereijo R, Turatsinze JV, Planavila A, Cairo M, Gavalda-Navarro A, Peyrou M, Moure R, Iglesias R, Giralt M, et al. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat Commun. 2016;7(1):13479. doi:10.1038/ncomms13479.
  • Ding P, Yang R, Li C, Fu HL, Ren GL, Wang P, Zheng DY, Chen W, Yang LY, Mao YF, et al. Fibroblast growth factor 21 attenuates ventilator-induced lung injury by inhibiting the NLRP3/caspase-1/GSDMD pyroptotic pathway. Crit Care. 2023;27(1):196. doi:10.1186/s13054-023-04488-5.
  • Pan X, Shao Y, Wu F, Wang Y, Xiong R, Zheng J, Tian H, Wang B, Wang Y, Zhang Y, et al. FGF21 prevents angiotensin II-Induced hypertension and vascular dysfunction by activation of ACE2/Angiotensin-(1–7) axis in mice. Cell Metab. 2018;27(6):1323–37.e5. doi:10.1016/j.cmet.2018.04.002.
  • Oliveras A, de la Sierra A. Resistant hypertension: patient characteristics, risk factors, co-morbidities and outcomes. J Hum Hypertens. 2014;28(4):213–17. doi:10.1038/jhh.2013.77.
  • Greenhill C. Link between FGF21 and blood pressure. Nat Rev Endocrinol. 2018;14(7):380. doi:10.1038/s41574-018-0030-4.
  • Li S, Zhu Z, Xue M, Yi X, Liang J, Niu C, Chen G, Shen Y, Zhang H, Zheng J, et al. Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1241–52. doi:10.1016/j.bbadis.2019.01.019.
  • Luo H, Wang X, Chen C, Wang J, Zou X, Li C, Xu Z, Yang X, Shi W, Zeng C. Oxidative stress causes imbalance of renal renin angiotensin system (RAS) components and hypertension in obese Zucker rats. J Am Heart Assoc. 2015;4(2). doi:10.1161/JAHA.114.001559.
  • Mathieu NM, Nakagawa P, Grobe CC, Reho JJ, Brozoski DT, Lu KT, Wackman KK, Ritter ML, Segar JL, Grobe JL, et al. ARRB2 (beta-arrestin-2) deficiency alters fluid homeostasis and blood pressure regulation. Hypertens. 2022;79(11):2480–92. doi:10.1161/HYPERTENSIONAHA.122.19863.
  • Luo H, Chen C, Guo L, Xu Z, Peng X, Wang X, Wang J, Wang N, Li C, Luo X, et al. Exposure to maternal diabetes mellitus causes renal dopamine D 1 receptor dysfunction and hypertension in adult rat offspring. Hypertens. 2018;72(4):962–70. doi:10.1161/HYPERTENSIONAHA.118.10908.
  • Chen K, Zhou M, Wang X, Li S, Yang D. The role of myokines and adipokines in hypertension and hypertension-related complications. Hypertens Res. 2019;42(10):1544–51. doi:10.1038/s41440-019-0266-y.
  • Xu C, Zhu J, Gong G, Guo L, Zhang Y, Zhang Z, Ma C. Anthocyanin attenuates high salt-induced hypertension via inhibiting the hyperactivity of the sympathetic nervous system. Clin Exp Hypertens. 2023;45:2233717. doi:10.1080/10641963.2023.2233717.
  • Yu XJ, Liu XJ, Guo J, Su YK, Zhang N, Qi J, Li Y, Fu LY, Liu KL, Li Y, et al. Blockade of microglial activation in hypothalamic paraventricular nucleus improves high salt-induced hypertension. Am J Hypertens. 2022;35(9):820–27. doi:10.1093/ajh/hpac052.
  • Yu XJ, Miao YW, Li HB, Su Q, Liu KL, Fu LY, Hou YK, Shi XL, Li Y, Mu JJ, et al. Blockade of endogenous angiotensin-(1-7) in hypothalamic paraventricular nucleus attenuates high salt-induced sympathoexcitation and hypertension. Neurosci Bull. 2019;35(1):47–56. doi:10.1007/s12264-018-0297-4.
  • Semba RD, Crasto C, Strait J, Sun K, Schaumberg DA, Ferrucci L. Elevated serum fibroblast growth factor 21 is associated with hypertension in community-dwelling adults. J Hum Hypertens. 2013;27(6):397–99. doi:10.1038/jhh.2012.52.
  • Chen P, Xu B, Feng Y, Li KX, Liu Z, Sun X, Lu XL, Wang LQ, Chen YW, Fan XX, et al. FGF-21 ameliorates essential hypertension of SHR via baroreflex afferent function. Brain Res Bull. 2020;154:9–20. doi:10.1016/j.brainresbull.2019.10.003.
  • Song JJ, Yang M, Liu Y, Song JW, Liu XY, Miao R, Zhang ZZ, Liu Y, Fan YF, Zhang Q, et al. Elabela prevents angiotensin II-induced apoptosis and inflammation in rat aortic adventitial fibroblasts via the activation of FGF21-ACE2 signaling. J Mol Histol. 2021;52(5):905–18. doi:10.1007/s10735-021-10011-3.
  • Lewis JE, Ebling FJP, Samms RJ, Tsintzas K. Going back to the biology of FGF21: new insights. Trends Endocrinol Metab. 2019;30(8):491–504. doi:10.1016/j.tem.2019.05.007
  • Zhang Y, Liu D, Long XX, Fang QC, Jia WP, Li HT. The role of FGF21 in the pathogenesis of cardiovascular disease. Chin Med J (Engl). 2021;134(24):2931–43. doi:10.1097/CM9.0000000000001890.
  • Tang TT, Li YY, Li JJ, Wang K, Han Y, Dong WY, Zhu ZF, Xia N, Nie SF, Zhang M, et al. Liver-heart crosstalk controls IL-22 activity in cardiac protection after myocardial infarction. Theranostic. 2018;8(16):4552–62. doi:10.7150/thno.24723.
  • Xiaolong L, Dongmin G, Liu M, Zuo W, Huijun H, Qiufen T, XueMei H, Wensheng L, Yuping P, Jun L, et al. FGF21 induces autophagy-mediated cholesterol efflux to inhibit atherogenesis via RACK1 up-regulation. J Cell Mol Med. 2020;24(9):4992–5006. doi:10.1111/jcmm.15118.
  • Weng HC, Lu XY, Xu YP, Wang YH, Wang D, Feng YL, Chi Z, Yan XQ, Lu CS, Wang HW. Fibroblast growth factor 21 attenuates salt-sensitive hypertension-induced nephropathy through anti-inflammation and anti-oxidation mechanism. Mol Med. 2021;27(1):147. doi:10.1186/s10020-021-00408-x.
  • Xi H, Li X, Zhou Y, Sun Y. The regulatory effect of the paraventricular nucleus on hypertension. Neuroendocrinol. 2024;114(1):1–13. doi:10.1159/000533691.
  • Ye S, Zhong H, Duong VN, Campese VM. Losartan reduces central and peripheral sympathetic nerve activity in a rat model of neurogenic hypertension. Hypertens. 2002;39(6):1101–06. doi:10.1161/01.hyp.0000018590.26853.c7.
  • Sriramula S, Cardinale JP, Lazartigues E, Francis J. ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res. 2011;92(3):401–08. doi:10.1093/cvr/cvr242
  • Ma A, Gao L, Wafi AM, Yu L, Rudebush T, Zhou W, Zucker IH. Overexpression of central ACE2 (angiotensin-converting enzyme 2) attenuates the pressor response to chronic central infusion of Ang II (Angiotensin II): a potential role for Nrf2 (nuclear factor [Erythroid-Derived 2]-Like 2). Hypertens. 2020;76(5):1514–25. doi:10.1161/HYPERTENSIONAHA.120.15681.
  • Niehof M, Borlak J, Bonini M. HNF4alpha dysfunction as a molecular rational for cyclosporine induced hypertension. PLoS One. 2011;6(1):e16319. doi:10.1371/journal.pone.0016319
  • Han H, Luo RH, Long XY, Wang LQ, Zhu Q, Tang XY, Zhu R, Ma YC, Zheng YT, Zou CG. Transcriptional regulation of SARS-CoV-2 receptor ACE2 by SP1. Elife. 2024;13. doi:10.7554/eLife.85985.
  • Gao HL, Yu XJ, Liu KL, Zuo YY, Fu LY, Chen YM, Zhang DD, Shi XL, Qi J, Li Y, et al. Chronic infusion of astaxanthin into hypothalamic paraventricular nucleus modulates cytokines and attenuates the renin-angiotensin system in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2021;77(2):170–81. doi:10.1097/FJC.0000000000000953.