1,810
Views
78
CrossRef citations to date
0
Altmetric
Original Articles

Sources, Distribution, Environmental Fate, and Ecological Effects of Nanomaterials in Wastewater Streams

, , , &
Pages 277-318 | Published online: 04 Nov 2014

REFERENCES

  • Auffan, M., Rose, J., Wiesner, M.R., and Bottero, J.Y. (2009). Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 157, 1127–1133.
  • Bare, J., Norris, G., Pennington, D., and McKone, T. (2003). TRACI: The tool for the reduction and assessment of chemical and other environmental impacts. J. Ind. Ecol. 6, 49–78.
  • Batley, G.E., and McLaughlin, M.J. (2010). Fate of manufactured nanomaterials in the Australian environment. CSIRO Niche manufacturing flagship report.
  • Baun, A., Sorensen, S.N., Rasmussen, R.F., Hartmann, N.B., and Koch, C.B. (2008). Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat. Toxicol. 86, 379–387.
  • Benn, T.M., and Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42, 4133–4139.
  • Bhatt, I., and Tripathi, B.N. (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82, 308–317.
  • Blaser, S.A., Scheringer, M., MacLeod, M., and Hungerbühler, K. (2008). Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 390, 396–409.
  • Bolan, N.S., Adriano, D.C., Kunhikrishnan, A., James, T., McDowell, R., and Senesi, N. (2011). Dissolved organic matter: biogeochemistry, dynamics and environmental significance in soils. Adv. Agron. 110, 1–75.
  • Brant, J.A., Labille, J., Robichaud, C.O., and Wiesner, M. (2007). Fullerol cluster formation in aqueous solutions: Implications for environmental release. J. Colloid Interface Sci. 314, 281–288.
  • Brar, S.K., Verma, M., Tyagi, R.D., and Surampalli, R.Y. (2010). Engineered nanoparticles in wastewater and wastewater sludge - evidence and impacts. Waste Manage. 30, 504–520.
  • Bystrzejewska-Piotrowska, G., Golimowski, J., and Urban, P.L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage. 29, 2587–2595.
  • Carbon Nanotubes Report. (2011). Eden energy in Australian production first of super strength “carbon nanotubes”. Retrieved from http://asx.com.au/asxpdf/20110117/pdf/41w6sqlj2brvpv.pdf
  • Chae, S.R., Wang, S., Hendren, Z.D., Wiesner, M.R., Watanabe, Y., and Gunsch, C.Y. (2009). Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. J. Memb. Sci. 329, 68–74.
  • Choi, O., Clevenger, T.E., Deng,B., Surampalli, R.Y., Ross, L., and Hu, Z. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res. 43, 1879–1886.
  • Choi, O., Deng, K.K., Kim, N.J., Ross, L., Surampalli, R.Y., and Hu, Z.Q. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42, 3066–3074.
  • Christian, P., Von der Krammer, F., Baalousha, M., and Hofmann, T. (2008). Nanoparticles: structure, properties, preparation and behavior in environmental media. Ecotoxicology 17, 326–343.
  • CWA. (2007). Clean Water Act. CWA Section 402 - The National Pollutant Discharge Elimination System, http://water.epa.gov/type/oceb/habitat/cwa402.cfm
  • Dams, R.I., Biswas, A., Olesiejuk, A., Fernandes, T., Christofi, N. (2011). Silver nanotoxicity using a light-emitting biosensor Pseudomonas putida isolated from a wastewater treatment plant. J. Hazard. Mater. 195, 68–72.
  • Davis, J.M. (2007). How to assess the risks of nanotechnology: learning from past experience. J. Nanosci. Nanotechnol. 7, 402–409.
  • Diallo, M.S., Christie, S., Swaminathan, P., Johnson, J.H. Jr., and Goddard, W.A. I. I. I. (2005). Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(b) from aqueous solution PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ. Sci. Technol. 39, 1366–1377.
  • Dror, I., Baram, D., and Berkowitz, B. (2005). Use of nanosized catalysts for transformation of chloro-organic pollutants. Environ. Sci. Technol. 39, 1283–1290.
  • El Saliby, I., Erdei, L., Shon, H.K., Kim, J.B., and Kim, J.H. (2011). Preparation and characterization of mesoporous photoactive Na-titanate microspheres. Catal. Today 164, 370–376.
  • Elliott, D., and Zhang, W. (2001). Field assessment of nanoparticles for groundwater treatment. Environ. Sci. Technol. 35, 4922–4926.
  • Esparza-Soto, M., and Westerhoff, P. (2003). Biosorption of humic and fulvic acids to live activated sludge biomass. Water Res. 37, 231–2310.
  • Etxeberria, E., Gonzalez, P., Baraja-Fernandez, E., and Romero, J.P. (2006). Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells. Plant Signal Behav. 1, 196–200.
  • Fabrega, J., Renshaw, J.C., and Lead, J.R. (2009). Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ. Sci. Technol. 43, 9004–9009.
  • Farré, M., Pérez, S., Gajda-Schrantz, K., Osorio, V., Kantiani, L., Ginebreda, A., and Barceló, D. (2010). First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J. Hydrol. 383, 44–51.
  • Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., and Kim, J.O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668.
  • Fries, R., and Simkó, M. (2012). (Nano-)Titanium dioxide (Part I): Basics, production, applications. Institute of Technology Assessment of the Austrian Academy of Sciences. NanoTrust-Dossiers No. 033. doi:10.1553/ita-nt-033.
  • Ganesh, R., Smeraldi, J., Hosseini, T., Khatib, L., Olson, B.H., and Rosso, D. (2010). Evaluation of nanocopper removal and toxicity in municipal wastewaters. Environ. Sci. Technol. 44, 7808–7813.
  • Gao, G. (2004). Nanostructures and nanomaterials: synthesis, properties and applications. London: Imperial College Press.
  • García, A., Delgado, L., Tora, J.A. , Casals, E., Gonzalez, E., Puntes, V., Font, X., Carrera, J., and Sanchez, A. (2012). Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard. Mater. 199–200, 64–72.
  • Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schurch, S., Kreyling, W., Shulz, H., Semmler, M., Imhof, V., Heyder, J., and Gehr, P. (2005). Ultrafine particles cross cellular membranes by nanophagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113, 1555–1560.
  • Geranio, L., Heuberger, M., and Nowack, B. (2009). The behavior of silver nanotextiles during washing. Environ. Sci. Technol. 43, 8113–8118.
  • GIA. (2010). Global nanomaterials industry. A global strategic business report. Global Industry Analyst, Inc. http://www.prweb.com/releases/nanomaterials/nanometals_nanotubes/prweb4719694.htm
  • Glazier, R., Venkatakrishnan, R., Gheorghiu, F., Walata, L., Nash, R., and Zhang, W. (2003). Nanotechnology takes root. Civil Eng. 73, 64–69.
  • Goedkoop, M., and Spriensma, R. (2000). The eco-indicator 99: A damage orientated method for life cycle impact assessment. Methodology Report, second edition. Amersfoort, Netherlands: PRé Consultants B.V.
  • Gottschalk, F., Ort, C., Scholz, R.W., and Nowack, B. (2011). Engineered nanomaterials in rivers-exposure scenarios for Switzerland at high spatial and temporal resolution. Environ. Pollut. 159, 3439–3445.
  • Gottschalk, F., Sonderer, T., Scholz, R.W., and Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216–9222.
  • Gottschalk, F., Sonderer, T., Scholz, R.W., and Nowack, B. (2010). Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 29, 1036–1048.
  • Grubb, G.F., and Bakshi, B.R. (2011). Life cycle of titanium dioxide nanoparticle production. J. Ind. Ecol. 15, 81–95.
  • Guo, H., Wyart, Y., Perot, J., Nauleau, F., and Moulin, P. (2010). Application of magnetic nanoparticles for UF membrane integrity monitoring at low-pressure operation. J. Membr. Sci. 350, 172–179.
  • Guo, Z., Pereira, T., Choi, O., Wang, Y., and Hahn, H.T. (2006). Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J. Mater. Chem. 16, 2800–2808.
  • Healy, M.L., Dahlben, L.J., and Isaacs, J.A. (2008). Environmental assessment of singlewalled carbon nanotube processes. J. Ind. Ecol. 12, 376–393.
  • Hendren, C.O., Mesnard, X., Dröge, J., and Wiesner, M.R. (2011). Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol. 45, 2562–2569.
  • Hischier, R., and Walser, T. (2012). Life cycle assessment of engineered nanomaterials: State of the art and strategies to overcome existing gaps. Sci. Total Environ. 425, 271–282.
  • Hou, L., Li, K., Ding, Y., Li, Y., Chen, J., Wu, X., and Li, X. (2012). Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere 87, 248–252.
  • Hou, L., Xia, J., Li, K., Chen, J., Wu, X., and Li, X. (2013). Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4+-N reduction. Water Sci. Technol. 67, 254–260.
  • Hoyt, V.W., and Mason, E. (2008). Nanotechnology: emerging health issues. J. Chem. Health Saf. 15, 10–15.
  • Hu, J., Lo, I.M. C., and Chen, G. (2007). Comparative study of various magnetic nanoparticles for Cr(VI) removal. Sep. Purif. Technol. 56, 249–256.
  • Hyung, H., Fortner, J.D., Hughes, J.B., and Kim, J.H. (2007). Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 41, 179–184.
  • Hyung, H., and Kim, J.H. (2009). Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Res. 43, 2463–2470.
  • Ivanov, V., Tay, J.H., Tay, S.T., and Jiang, H.L. (2004). Removal of micro-particles by microbial granules used for aerobic wastewater treatment. Water Sci. Technol. 50, 147–154.
  • Jarvie, H.P., Al-Obaidi, H., King, S.M., Bowes, M.J., Lawrence, M.J., Drake, A.F., Green, M.A., and Dobson, P.J. (2009). Fate of silica nanoparticles in simulated primary wastewater treatment. Environ. Sci. Technol.8622–8628.
  • Jassby, D., Chae, S.R., Hendren, Z., and Wiesner, M. (2010). Membrane filtration of fullerene nanoparticle suspensions: effects of derivatization, pressure, electrolyte species and concentration. J. Colloid Interface Sci. 346, 296–302.
  • Jimenez, M.S., Gómez, M.T., Bolea, E., Laborda, F., and Castillo, J. (2011). An approach to the natural and engineered nanoparticles analysis in the environment by inductively coupled plasma mass spectrometry. Int. J. Mass Spectrom. 307, 99–104.
  • Ju-Nam, Y., and Lead, J.R. (2008). Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414.
  • Judy, J.D., Unrine, J.M., and Bertsch, P.M. (2011). Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol. 45, 776–781.
  • Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M., and Boller, M. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 156, 233–239.
  • Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., and Siegrist, H. (2011). Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant Environ. Sci. Technol. 45, 3902–3908.
  • Kanel, S.R., Manning, B., Charlet, L., and Choi, H. (2005). Removal of arsenic(c) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 39, 1291–1298.
  • Kang, M., Mauter, S., and Elimelech, M. (2009). Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ. Sci. Technol. 43, 2648–2653.
  • Khanna, V., Bakshi, B.R., and Lee, L.J. (2008). Carbon nanofiber production. J. Ind. Ecol. 12, 394–410.
  • Khosravi, K., Hoque, M.E., Dimock, B., Hintelmann, H., and Metcalfe, C.D. (2012). A novel approach for determining total titanium from titanium dioxide nanoparticles suspended in water and biosolids by digestion with ammonium persulfate. Anal. Chim. Acta 713, 86–91.
  • Kim, B., Park, C.S., Murayama, M., and Hochella, M.F. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 44, 7509–7514.
  • Kim, J.H., Cho, D.L., Kim, G.J., Gao, B., and Shon, H.K. (2011). Titania nanomaterials produced from Ti-salt flocculated sludge in water treatment. Catal. Surv. Asia 15, 117–126.
  • Kim, J.S., Yoon, T.J., Yu, K.N., Kim, B.G., Park, S.J., Kim, H.W., Lee, K.H., Park, S.B., Lee, J.K., and Cho, M.H. (2006). Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 89, 338–347.
  • Kiser, M.A., Ladner, D.A., Hristovski, K.D., and Westerhoff, P.K. (2012). Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: implications for testing protocol and environmental fate. Environ. Sci. Technol. 46, 7046–7053.
  • Kiser, M.A., Ryu, H., Jang, H., Hristovski, K., and Westerhoff, P. (2010). Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res. 44, 4105–4114.
  • Kiser, M.A., Westerhoff, P., Benn, T., Wang, Y., Pérez-Rivera, J., and Hristovski, K. (2009). Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 43, 6757–6763.
  • Klaine, S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., and Lead, J.R. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825–1851.
  • Köhler, A.R., Som, C., Helland, A., and Gottschalk, F. (2008). Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 16, 927–937.
  • Korea IT News. (2013, January 31). Korean nano firms speeding up expansion of production capacity.
  • Kunhikrishnan, A., Bolan, N.S., Müller, K., Laurenson, S., Naidu, R., and Kim, W.I. (2012). The influence of wastewater irrigation on the transformation and bioavailability of heavy metal(loid)s in soil. Adv. Agron. 115, 215–297.
  • Kunhikrishnan, A., Bolan, N.S., and Naidu, R. (2011). Immobilization and phytoavailability of copper in the presence of recycled water sources. Plant Soil 348, 425–438.
  • Kunhikrishnan, A., Bolan, N.S., Naidu, R., and Kim, W.I. (2013). Recycled water sources influence the bioavailability of copper to earthworms. J. Hazard. Mater. 261, 784–792.
  • Kunzmann, A., Andersson, B., Thurnherr, T., Krug, H., Scheynius, A., and Fadeel, B. (2011). Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochim. Biophys. Acta 1810, 361–373.
  • LCA. (2007). Nanotechnology and life cycle assessment. A systems approach to nanotechnology and the environment. Woodrow Wilson International Center for Scholars, Washington.
  • Lee, J.H., Kwon, M., Ji, J.H., Kang, C.S., Ahn, K.H., Han, J.H., and Yu, I.J. (2011). Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal. Toxicol. 23, 226–236.
  • Lee, W., An, Y., Yoon, H., and Kweon, H. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant uptake for water insoluble nanoparticles. Environ. Toxicol. Chem. 27, 1915–1921.
  • Limbach, L.K., Bereiter, R., Mueller, E., Krebs, R., Gaelli, R., and Stark, W.J. (2008). Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol. 42, 5828–5833.
  • Lin, D., and Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42, 5580–5585.
  • Lin, S., Keskar, D., Wu, Y., Wang, X., Mount, A.S., Klaine, S.J., More, J.M., Rao, A.M., and Ke, P.C.Detection of phospholipid–carbon nanotube translocation using fluorescence energy transfer. Appl. Phys. Lett. 89, 143118–143121.
  • Lin, S., Reppert, J., Hu, Q., Hunson, J.S., Reid, M.L., Ratnikova, T., Rao, A.M., Luo, H., and Ke, P. (2009). Uptake, translocation and transmission of carbon nanomaterials in rice plants. Small1128–1132.
  • Lin, S.H., and Yang, C.R. (2004). Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication. J. Hazard. Mater. 108, 103–109.
  • Lipp, P., Muller, U., Hetzer, B., and Wagner, T. (2009). Characterization of nanoparticulate fouling and breakthrough during low-pressure membrane filtration. Desalin. Water Treat. 9, 234–240.
  • Liu, J.F., Sun, J., and Jiang, G.B. (2010). Use of cloud point extraction for removal of nanosized copper oxide from wastewater. Chinese Sci. Bull. 55, 346–349.
  • Luongo, L.A., and Zhang, X.Q. (2010). Toxicity of carbon nanotubes to the activated sludge process. J. Hazard. Mater. 178, 356–362.
  • Mauter, M., and Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42, 5843–5859.
  • Meng, F.G., Chae, S.R., Drews, A., Kraume, M., Shin, H.S., and Yang, F.L. (2009). Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res. 43, 1489–1512.
  • Meyer, J.N., Lord, C.A., Yang, X.Y. , Turner, E.A. , Baddireddy, A.R. , Marinakos, S.M. , Chilkoti, A., Wiesner, M.R. , and Auffan, M. (2010). Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat. Toxicol. 100, 140–150.
  • Miller, R.J., Bennett, S., Keller, A.A., Pease, S., and Lenihan, H.S. (2012). TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7, e30321. doi:10.1371/journal.pone.0030321.
  • Morimoto, Y., Kobayashi, N., Shinohara, N., Myojo, T., Tanaka, I., and Nakanshi, J. (2010). Hazard assessments of manufactured nanomaterials. J. Occup. Health. 52, 325–334.
  • Morrow, J.B., Arango, C., and Holbrook, R.D. (2010). Association of quantum dot nanoparticles with Pseudomonas aeruginosa biofilm. J. Environ. Qual. 39, 1934–1941.
  • Mueller, N.C., and Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453.
  • Müller, K., Magesan, G.N., and Bolan, N.S. (2007). A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agric. Ecosyst. Environ. 120, 93–116.
  • Musee, N. (2011). Nanotechnology risk assessment from a waste management perspective: are the current tools adequate? Human Exper. Toxicol. 30, 820–835.
  • Musee, N., Thwala, M., and Nota, N. (2011). The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J. Environ. Monit. 13, 1164–1183.
  • Nanomaterials Report. (2008). Report of review panel meetings on preventive measures for worker exposure to chemical substances posing unknown risks to human health (nanomaterials). Retrieved from http://www.jniosh.go.jp/joho/nano/files/mhlw/s1126-6a_en.pdf
  • Nanotechnology White Paper. (2007). Report prepared for the U.S. Environmental Protection Agency by members of the Nanotechnology Workgroup, a group of EPA's Science Policy Council, http://www.epa.gov/osainter/pdfs/nanotech/epa-nanotechnology-whitepaper-0207.pdf
  • Nowack, B., Mueller, N.C., Gottschalk, F., Sonderer, T., and Scholz, R.W. (2009). Exposure modeling of engineered nanoparticles in the environment. Abs. Pap. Am. Chem. S. 237.
  • Nyberg, L., Turco, R.F., and Nies, L. (2008). Assessing the impact of nanomaterials on anaerobic microbial communities. Environ. Sci. Technol. 42, 1938–1943.
  • Ostertag, K., and Husing, B. (2008). Identification of starting points for exposure assessment in the post-use phase of nanomaterial-containing products. J. Clean. Prod. 16, 938–948.
  • Ostiguy, C., Roberge, B., Woods, C., and Soucy, B. (2010). Engineered nanoparticles current knowledge about OHS risks and prevention measures. Report R-656, IRSST. Bibliotheque et archives nationales. Montreal, Quebec, Canada.
  • Park, H.O., Yu, M.R., and Yang, S.I. (2011). The survey on use of photo-catalytic nanoparticles in Korea. Toxicol. Environ. Health Sci. (ToxEHS) 3, 54–57.
  • Park, J., Kwak, B.K., Bae, E., Lee, J., Kim, Y., Choi, K., and Yi, J. (2009). Characterization of exposure to silver nanoparticles in a manufacturing facility. J. Nanopart. Res. 11, 1705–1712.
  • Piccinno, F., Gottschalk, F., Seeger, S., and Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 14, 1109–1119.
  • Quik, J.T. K., Vonk, J.A., Hansen, S.F., Baun, A., and Van De Meent, D. (2011). How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ. Int. 37, 1068–1077.
  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W.S., Gavsakar, A., and Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Technol. 39, 1309–1318.
  • Radad, K., Al-Shraim, M., Moldzio, R., Rausch, W.D. (2012). Recent advances in benefits and hazards of engineered nanoparticles. Environ. Toxicol. Phar. 34, 661–672.
  • Rai, M., Yadav, A., and Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83.
  • Research and Markets. (2012). The global market for zinc oxide nanopowders. Retrieved from http://www.researchandmarkets.com/reports/2116313/
  • Rezic, I. (2011). Determination of engineered nanoparticles on textiles and in textile wastewaters. TRAC-Trend. Anal. Chem. 30, 1159–1167.
  • Rosenbaum, R.K., Bachmann, T.M., Swirsky, G.L., Huijbregts, M.A. J., Jolliet, O., Juraske, R., Koehler, A., Larsen, H.F., Macleod, M., Margni, M., McKone, T.E., Payet, J., Schuhmacher, M., Van de Meent, D., and Hauschild, M.Z. (2008). USEtox—the UNEP-SETAC toxicity model: recommended characterization factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13, 532–46.
  • Savolainen, K., Pylkkänen, L., Norppa, H., Falck, G., Lindberg, H., Tuomi, T., Vippola, M., Alenius, H., Hämeri, K., Koivisto, J., Brouwer, D., Mark, D., Bard, D., Berges, M., Jankowska, E., Posniak, M., Farmer, P., Singh, R., Krombach, F., Bihari, P., Kasper, G., and Seipenbusch, M. (2010). Nanotechnologies, engineered nanomaterials and occupational health and safety: A review. Safety Sci. 48, 957–963.
  • Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., Wilson, L.J., Hughes, J.B., West, J.L., and Colvin, V.L. (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4, 1881–1887.
  • Schmid, K., and Riediker, M. (2008). Use of nanoparticles in Swiss industry: a targeted survey. Environ. Sci. Technol. 42, 2253–2260.
  • Scown, T.M., van Aerle, R., and Tyler, C.R. (2010). Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit. Rev. Toxicol. 40, 653–670.
  • Shafer, M.M., Overdier, J.T., and Armstong, D.E. (1998). Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environ. Toxicol. Chem. 17, 630–641.
  • Shelley, S.A. (2005). Nanotechnology: Turning basic science into reality. In L. Theodore and R.G. Kunz (Eds.), Nanotechnology: Environmental implications and solutions (pp. 61–107). New York: Wiley.
  • Sheng, Z., and Liu, Y. (2011). Effects of silver nanoparticles on wastewater biofilms Water Res. 45, 6039–6050.
  • Shon, H.K., Vigneswaran, S., Kim, I.S., Cho, J., Kim, G.J., Kim, J.B., and Kim, J.H. (2007). Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater. Environ. Sci. Technol. 41, 1372–1377.
  • Shon, H.K., Vigneswaran, S., and Snyder, S.A. (2006). Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Crit. Rev. Environ. Sci. Technol. 36, 327–374.
  • Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., and Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles Nanotechnology 18, 225103–225111.
  • Simonet, B.M., and Valcárcel, M. (2009). Monitoring nanoparticles in the environment. Anal Bioanal. Chem. 393, 17–21.
  • Singh, A., Lou, H.H., Pike, R.W., Agboola, A., Li, X., Hopper, J.R., and Yaws, C.L. (2008). Environmental impact assessment for potential continuous processes for the production of carbon nanotubes. Am. J. Environ. Sci. 4, 522–534.
  • Smijs, T.G., and Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 4, 95–112.
  • Som, C., Berges, M., Chaudhry, Q., Dusinska, M., Fernandes, T.F. , Olsen, S.I. , and Nowack, B.The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269, 160–169.
  • Sotiriou, G.A., and Pratsinis, S.E. (2010). Antibacterial activity of nanosilver ions and particles. Environ. Sci. Technol. 44, 5649–5654.
  • Sun, X., Sheng, Z., and Liu, Y. (2013). Effects of silver nanoparticles on microbial community structure in activated sludge. Sci. Total Environ. 443, 828–835.
  • Tiede, K., Hassellöv, M., Breitbarth, E., Chaudhry, Q., and Boxall, A.B. A. (2009a). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J. Chromatogr. A 1216, 503–509.
  • Tiede, K., Tear, S.P., David, H., and Boxall, A.B. A. (2009b). Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res. 43, 3335–3343.
  • Tiwari, D.K., Behari, J., and Sen, P. (2008). Applications of nanoparticles in waste water treatment. World Appl. Sci. J. 3, 417–433.
  • Tong, M., Ding, J., Shen, Y., and Zhu, P. (2010). Influence of biofilm on the transport of fullerene (C-60) nanoparticles in porous media. Water Res. 44, 1094–1103.
  • U.S. Environmental Protection Agency. (2009). Nanomaterial Research Strategy (NRS). Office of Research and Development Report, EPA/620/K-09/011. Washington, DC: USEPA.
  • Umwelt Bundes Amt. (2006). Nanotechnology: Opportunities and risks for humans and the environment. Retrieved from http://www.umweltbundesamt.de/uba-info-presse-e/hintergrund/nanotechnology.pdf.
  • Upadhyayula, V.K. K., and Gadhamshetty, V (2010). Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering. Biotechnol. Adv. 28, 802–816.
  • Valli, F., Tijoriwala, K., and Mahapatra, A. (2010). Nanotechnology for water purification. Int. J. Nucl. Desalt. 4, 49–57.
  • Van Hoecke, K., De Schamphelaere, K.A. C., Van der Meeran, P., Smagghe, G., and Janssen, C.R. (2011). Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ. Pollut. 159, 970–976.
  • Von der Kammer, F., Ottofuelling, S., and Hofmann, T. (2010). Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environ. Pollut. 158, 3472–3481.
  • Wang, C.T. (2007). Photocatalytic activity of nanoparticle gold/iron oxide aerogels for azo dye degradation. J. Non-Cryst. Solids 353, 1126–1133.
  • Wang, Y., Westerhoff, P., and Hristovski, K.D. (2012). Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. J. Hazard. Mater. 201–202, 16–22.
  • Wani, M.Y., Hashim, M.A., Nabi, F., and Malik, M.A. (2011). Nanotoxicity: Dimensional and morphological concerns. Adv. Phys. Chem. 2011, 1–15. doi:10.1155/2011/450912
  • Weinberg, H., Galyean, A., and Leopold, M. (2011). Evaluating engineered nanoparticles in natural waters. TRAC–Trends Anal. Chem. 30, 72–83.
  • Westerhoff, P.K., Kiser, A., and Benn, T.M. (2009). Detection of titanium dioxide in wastewater treatment plants. 237th ACS National Meeting, Salt Lake City, Utah, March 25.
  • Westerhoff, P.K., Kiser, A., and Hristovski, K. (2013). Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci. 30, 109–117.
  • Westerhoff, P.K., Rittmann, B., Alford, T., Kiser, A., Wang, Y., Hristovski, K., and Benn, T. (2008b). Year 1 annual report: Biological fate and electron microscopy detection of nanoparticles during wastewater treatment. EPA Grant Number RD-833322.
  • Westerhoff, P.K., Song, G., Hristovski, K., and Kiser, M.A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J. Environ. Monit. 13, 1195–1203.
  • Westerhoff, P.K., Zhang, Y., Crittenden, J., and Chen, Y. (2008a). Properties of commercial nanoparticles that affect their removal during water treatment. In V.H. Grassian (Ed.), Nanoscience and nanotechnology: Environmental and health impacts (pp. 71–90). Hoboken, NJ: Wiley.
  • Wijnhoven, S.W. P., Peijnenburg, W.J. G. M., Herberts, C.A., Hagens, W.I., Oomen, A.G., Heugens, E.H. W., Roszek, B., Bisschops, J., Gosens, I., van de Meent, D., Dekkers, S., de Jong, W., van Zijverden, M., Sips, A.J. A. M., and Geertsma, R.E. (2009). Nanosilver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicol. 3, 109–138.
  • World Nanomaterials. (2010). Market research, market share, market size, sales, demand forecast, market leaders, company profiles, industry trends. Retrieved from http://www.freedoniagroup.com/World-Nanomaterials.html
  • Xu, S., Shangguan, W., Yuan, J., Shi, J., and Chen, M. (2007). Preparations and photocatalytic degradation of methyl orange in water on magnetically separable Bi12TiO20 supported on nickel ferrite. Sci. Technol. Adv. Mater. 1–2, 40–46.
  • Yang, Y., Chen, Q., Wall, J.D., and Hu, Z. (2012). Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Res. 46, 1176–1184.
  • Yin, Y.X., Zhang, X.Q., Graham, J., and Luong, L. (2009). Examination of purified single-walled carbon nanotubes on activated sludge process using batch reactors. J. Environ. Sci. Health A 44, 661–665.
  • Zhang, Q., Huang, J.Q., Zhao, M.Q., Qian, W.Z., and Wei, F. (2011). Carbon nanotube mass production: Principles and processes. ChemSusChem 4, 864–889.
  • Zhang, W.X. (2003). Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323–332.
  • Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., and Crittenden, J.C. (2008). Stability of commercial metal oxide nanoparticles in water. Water Res. 42, 2204–2212.
  • Zheng, X., Wu, R., and Chen, Y. (2011). Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environ. Sci. Technol. 45, 2826–2832.
  • Zhu, H., Han, J., Xiao, J.Q., and Jin, Y. (2008). Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10, 713–717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.